100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Modelling Computing Systems Chapter 4 Faron Moller & Georg Struth

Rating
-
Sold
-
Pages
6
Uploaded on
25-11-2020
Written in
2020/2021

Logic for Computer Science/Logic for Computer Technology Chapter 4 Summary of the book Modelling Computing Systems written by Faron Moller Georg Struth. Summary written in English. Using examples and pictures, the substance and theory are clarified. Given at Utrecht University.

Show more Read less
Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
Hoofdstuk 4
Uploaded on
November 25, 2020
Number of pages
6
Written in
2020/2021
Type
Summary

Subjects

Content preview

Hoofdstuk 4:

Predicates: properties which may be true or false of particular elements in a given universe.
Quantifiers: the means by which we refer to elements which satisfy such properties.

We sometimes defined sets by stating using the following notation:

- { x : x > 17}
- { p : p is a prime number}

Or more generally, we write {x : x has the property P}. Such a set consists of all elements that satisfy
the predicate P. In general, we will write P(x) when ‘x has the property P’, or when ‘P holds for x’.

A predicate is not the same as a proposition:

- P(x) = x > 17 ∧ x > 5 defines a predicate on x
- x < 12 defines a proposition.

Predicates differ from propositions in that they do not have a fixed truth value, since we do not
know the value of the object to which it refers.



Example: Let the universe of discourse be the Duck family: DUCKS = {Quackmore, Hortense, Scrooge,
Donald, Della, Huey, Louis, Dewey}, and define the following predicate:

Female(x) = “x is a female”.

Then:

- Female(Hortense) and Female(Della) are both true;
- Female(Quackmore), Female(Scrooge), Female(Donald), Female(Huey), Female( Louis),
Female(Dewey) are all false;
- The truth set of the predicate Female(x) is {Hortense, Della}

Predicates can have more than one argument. In that case, they are typically called a relation. We
have already encountered several different relations when studying sets:

- SubsetOf(A,B) holds if for all x, x ∈ A ⇒ x ∈ B
- EqualSet(A,B) holds if both A ⊆ B and B ⊆ A
- ProperSubset(A,B) holds if A ⊆ B and A ≠ B

Many familiar relations are written using infix operators, such as ⊆ or =, rather than a function
name, such as SubsetOf.

We can ‘define’ a predicate Divides(x, y) to hold when x and y are natural numbers and x divides
evenly y (that is, there is no remainder after performing the division):

- For example, Divides(3, 15) holds.
- But Divides(3, 17) does not.

We can construct a truth-set: {(x, y) : Divides(x, y)} To be the set of all pairs (x, y) such that x divides
evenly into y. Traditionally, mathematicians write x | y when Divides(x, y) holds.

, When defining a predicate of the form: P(x) = ...x... The occurrences of x on the right hand side of the
equality all refer to the x bound by the declaration P(x). If we write: P(x) = ...y... It is not clear what y
is – where it is not bound - we say that the variable y is free. Example: ∀y P (x, y): x is free and y is
bound by the universal quantifier.

We can turn any predicate into a proposition by substituting a value for variable bound in the
predicate’s definition. For example, we can define the following predicate: P(x) = x > 1337

- P(10.000) is the proposition 10.000 > 1337 (which happens to be true)
- P(5) is the proposition 5 > 1337 (which happens to be false).



Example:

How many elements are there in the set { x : x < 17}? It depends! Is it a set of natural numbers,
integers, real numbers, … I prefer to be explicit: { x ∈ N : x < 17 }. This avoids confusion and makes it
clear what the universe of discourse is that I’m assuming. These examples all show that – even in the
study of formal logic – there can be information left implicit in the context, naming conventions,
universe of discourse, etc.



We cannot express infinite conjunctions and disjunctions in propositional logic. Example: The
universe of discourse is the set consisting of the four children: Children = {Joel, Felix, Oskar,
Amanda}. They get into the car and head off to school. One of the children has to sit in the front
passenger’s seat, as there is only room for three
passengers in the back seat. Thus, the predicate:
Front(x) which denotes that child x sits in the front
seat, must be true of some one of them. As there is
only room for one child in the front seat, the
predicate front(x) must be true of exactly one child
that is, it must be true of one and false of all of the
others. This means that the following proposition
must be true:



These propositions are lengthy already when there are only four elements in the universe of
discourse.

Let A be the set {0,1,2,3}. We say A is the subset of some other set B, written A ⊆ B, when all the
elements of A also occur in the set B. Or more precisely: 0 ∈ B ∧ 1 ∈ B ∧ 2 ∈ B ∧ 3 ∈ B.

This may work for a finite set, but what if we want to show that all the even numbers are also
natural numbers? 0 ∈ N ∧ 2 ∈ N ∧ 4 ∈ N ∧ 6 ∈ N ∧ …

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
luukvaa Universiteit Utrecht
Follow You need to be logged in order to follow users or courses
Sold
760
Member since
7 year
Number of followers
589
Documents
12
Last sold
1 week ago

Welkom op mijn stuvia pagina! Kijk gerust rond welke samenvattingen op dit moment op mijn pagina staan. Gedurende elk jaar zullen er weer nieuwe samenvattingen verschijnen, dus neem af en toe een kijkje en klik op het knopje \'\'volgen\". Succes met studeren!

4.0

284 reviews

5
108
4
102
3
58
2
5
1
11

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions