100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

TEST BANK FOR Trigonometry 5th Edition by Cynthia Y. Young ISBN:978-1119742623 COMPLETE GUIDE ALL CHAPTERS COVERED 100% VERIFIED A+ GRADE ASSURED!!!!NEW LATEST UPDATE!!!!

Beoordeling
-
Verkocht
-
Pagina's
974
Cijfer
A+
Geüpload op
28-07-2025
Geschreven in
2024/2025

TEST BANK FOR Trigonometry 5th Edition by Cynthia Y. Young ISBN:978-1119742623 COMPLETE GUIDE ALL CHAPTERS COVERED 100% VERIFIED A+ GRADE ASSURED!!!!NEW LATEST UPDATE!!!!

Instelling
Trigonometry 5th Edition
Vak
Trigonometry 5th Edition











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Trigonometry 5th Edition
Vak
Trigonometry 5th Edition

Documentinformatie

Geüpload op
28 juli 2025
Aantal pagina's
974
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

CHAPTER 1 br




Section 1.1 Solutions --------------------------------------------------------------------------------
br br br




1 x 1 x
 
b r b r b r br b r b r b r

1. Solve for x:
b r br br b r br 2. Solve for x:
b r br br b r br



2 360∘ 4 360∘
360∘  2x, so that x 180∘ .
br br b r br b r br br br 360∘  4x, so that x  90∘ .
b r br b r br b r br br br




1 x 2 x
3. Solve for x:   4. Solve for x:  
b r b r b r b r b r b r

b r br br b r br br b r br br b r b r br



3 360∘ 3 360∘
360∘  3x, so that x  120∘ . (Note
br br br br b r br br br br 720∘  2(360∘ )  3x, so that x  240∘ . (
br br br br br br br b r br br br br



: The angle has a negative measure si
br br br br br br br Note: The angle has a negative measur
b r br br br br b r



nce it is a clockwise rotation.)
br br br br br e since it is a clockwise rotation.)
br br br br br br




5 x 7 x
 
b r b r b r br brb r b r b r

5. Solve for x:
b r br br b r br 6. Solve for x:
b r br br b r br



6 360∘ 12 360∘
1800∘  5(360∘ )  6x, so that x  300∘ .
br br br br br br br b r br br br 2520∘  7(360∘ ) 12x, so that x  210∘ .
br br br br br b r br b r br br br




4 x 5 x
7. Solve for x:   8. Solve for x:  
br b r b r b r b r b r b r

b r br br b r br br b r br br b r br br



5 360∘ 9 360∘
1440∘  4(360∘ )  5x, so that
br br br br br br br 1800∘  5(360∘ )  9x, so that
br br br br br br br




x  288∘ .
br br br x  200∘ .
br br br




(Note: The angle has a negative meas
b r br br br br br (Note: The angle has a negative measur
b r br br br br br



ure since it is a clockwise rotation.)
br br br br br br e since it is a clockwise rotation.)
br br br br br br




9. 10.
a) complement: 90∘ 18∘  72∘ b r br b r b r a) complement: 90∘ 39∘  51∘ b r br br b r b r




b) supplement: 180∘ 18∘  162∘ b r br b r b r b) supplement: 180∘ 39∘  141∘ b r br br b r b r




11. 12.
a) complement: 90∘  42∘  48∘ b r br br b r b r a) complement: 90∘ 57∘  33∘ b r br br b r b r




b) supplement: 180∘  42∘  138∘ b r br br b r b r b) supplement: 180∘ 57∘  123∘ b r br br b r b r




1

,Chapter 1 br




13. 14.
a) complement: 90∘ 89∘  1∘ b r br br b r b r a) complement: 90∘ 75∘  15∘ b r br br b r b r




b) supplement: 180∘ 89∘  91∘ b r br br b r b r b) supplement: 180∘  75∘  105∘ b r br br b r b r




15. Since the angles with measures 4x∘ and 6x∘ are assumed to be complement
b r br br br br br b r b r br br br br br




ary, we know that 4x∘ 6x∘  90∘. Simplifying this yields
br br br br br br br br b r br br




10x∘  90∘, br br b
r b r so that x  9. So, the two angles have measures 36∘and 54∘ .
br b r br br b r br br br br br b r br br




16. Since the angles with measures 3x∘ and 15x∘ are assumed to be supplement
b r br br br br br b r b r br br br br br




ary, we know that 3x∘  15x∘ 180∘. Simplifying this yields
br br br br br br br br b r br br




18x∘ 180∘, so that br br br br b r x 10. So, the two angles have measures 30∘ and 150∘ .
br br b r br br br br br b r br br br




17. Since the angles with measures 8x∘ and 4x∘ are assumed to be supplementar
b r br br br br b r br b r br br br br br




y, we know that 8x∘  4x∘ 180∘. Simplifying this yields
br br br br br br br br b r br br




12x∘ 180∘, br br b r so that x 15. So, the two angles have measures 60∘ and 120∘ .
br b r br br b r br br br br br b r br br br




18. Since the angles with measures 3x 15∘and 10x 10∘are assumed to be com
b r br br br br b r br b
r b r br b
r br br br br




plementary, we know that 3x 15∘  10x 10∘  90∘. Simplifying this yields
br br br br br br br br br br b r br br




13x 25∘  90∘, br br br br b r so that 13x∘  65∘ and thus, x  5. So, the two angles have measu
br br br br b r br b r br br b r br br br br br




res 30∘and 60∘ .
b r br br




19. Since     180∘, we know th
b r br br br br br b r br b r br br 20. Since     180∘, we know tha
b r br br br br br b r br b r br br




at t
1 17∘ –33∘  180∘ and so,  30∘ . 1 10∘ –45∘  180∘ and so,   25∘ .
– –
br br br br br br br b r br br br br br br br br br br br br br br

br br


br150∘ br155∘



21. Since     180∘, we know th
b r br br br br br b r br b r br br 22. Since     180∘, we know tha
b r br br br br br b r br b r br br




at t
 4      180∘ and so,   30∘.
br br br br br br br br br br br br br 3     180∘ and so,   36∘.
br br br br br br br br br br br br br


–– –– –– ––
br6br br5

Thus,   4 120∘ and     30∘ .
b r b r br b r br b r br b r br b r br br Thus,   3 108∘ and     36∘ .
b r b r br b r br b r br b r br b r br br




2

, Section 1.1br




23.  180∘ 53.3∘  23.6∘  103.1∘
b r br br br br br br br br br 24.  180∘ 105.6∘ 13.2∘  61.2∘
b r br br br br br br br br




25. Since this is a right triangle, we know from the Pythagorean Theorem that a
b r br br br br br br br br br br br br br



2
 b2  c2. Using the given information, this becomes 42 32  c2, which simpl
br br br br b r br br br br br b r br br br br br b r br




ifies to c2  25, so we conclude that c  5.
br b r br br b r br br br b r br br br




26. Since this is a right triangle, we know from the Pythagorean Theorem that
b r br br br br br br br br br br br br




a2  b2  c2. Using the given information, this becomes 32  32  c2, which simp
br br b r br b r br br br br br b r br br b r br br b r br




lifies to c2 18, so we conclude that c 
br b r b r br b r br br br b r br b r b r 18  3 2 . br br b r br




27. Since this is a right triangle, we know from the Pythagorean Theorem that a
b r br br br br br br br br br br br br br



2
 b2  c2. Using the given information, this becomes 62  b2 102, which sim
br br br br b r br br br br br b r br br br br br b r br




plifies to 36  b2 100 and then to, b2  64, so we conclude that b  8 .
br b r br br br br br br br br br br b r br br br b r br br br




28. Since this is a right triangle, we know from the Pythagorean Theorem that
b r b r b r b r b r b r b r br b r b r b r b r b r




a2  b2  c2. Using the given information, this becomes a2  72 122, which
br br b r br b r br br br br br b r br br b r br br b r




simplifies to a2  95, so we conclude that a  95 .
br br b r br br b r br br br b r br br




29. Since this is a right triangle, we know from the Pythagorean Theorem that
b r b r b r b r b r b r b r br b r b r b r b r b r




a2  b2  c2. Using the given information, this becomes 82  52  c2, which
br br b r br b r br br br br br b r br br b r br br b r br




simplifies to c2  89, so we conclude that c  br b r br br b r br br br b r br 89 . br




30. Since this is a right triangle, we know from the Pythagorean Theorem that
b r b r b r b r b r b r b r br b r b r b r b r b r




a2  b2  c2. Using the given information, this becomes 62  52  c2, which
br br b r br b r br br br br br b r br br b r br br b r br




simplifies to c2  61, so we conclude that c  br b r br br b r br br br b r br 61 . br




31. Since this is a right triangle, we know from the Pythagorean Theorem that
b r b r b r b r b r b r b r br b r b r b r b r b r




a2  b2  c2. Using the given information, this becomes 72  b2 112, which
br br b r br b r br br br br br b r br br b r br br b r




simplifies to b2  72, so we conclude that b  72  6 2 .
br br b r br br b r br br br b r br br br b r br




32. Since this is a right triangle, we know from the Pythagorean Theorem that
br br br br br br br br br br br br br




a2  b2  c2. Using the given information, this becomes a2  52  92, which
br br b r br b r br br br br br b r br br b r br br b r br




simplifies to a2  56, so we conclude that a  br b r br br b r br br br b r br 56  2 14 . br br b r br




3

, Chapter 1 br




33. b r Since this is a right triangle, we know from the Pythagorean Theorem that
b r b r b r b r b r b r br b r b r b r b r b r




 7
2b
a2  b2  c2. Using the given information, this becomes a2   52, which simpli
r


br br b r br b r br br br br br b r br br br br br b r br
b r




fies to a2 18, so we conclude that a 
br b r b r br b r br br br b r br b r b r 18  3 2 . br br b r br




34. Since this is a right triangle, we know from the Pythagorean Theorem that
br br br br br br br br br br br br br




a2  b2  c2. Using the given information, this becomes 52  b2 102, which
br br b r br b r br br br br br b r br br b r br br b r




simplifies to b2  75, so we conclude that b  75  5 3 .
br br b r br br b r br br br b r br br br b r br




35. If x 10 in., then the hypotenuse
b r b r br br br b r br br br 36. If x  8 m, then the hypotenuse of th
b r b r br br br b r br br br br




of this triangle has length is triangle has length 8 2 11.31 m .
br br br br

br br br b r b r br br br br



10 2 14.14 in.
b r br br br




37. Let x be the length of a leg in the given 45∘  45∘ 90∘ triangle. If the hypo
b r br br br br br br br br br br b r br br br br br b r br br




tenuse of this triangle has length 2 2 cm, then
br br br br br b r b r b r b r




2 x  2 2, so that x  2.
br br br b r br br br br br br




Hence, the length of each of the two legs is 2 cm .
br br br br br br br br br b r br br




38. Let x be the length of a leg in the given 45∘  45∘ 90∘ triangle. If the hypotenuse
br br br br br br br br br br br br br br br br b r b r br br



10 10
of this triangle has length 10 ft., then 2 x  10, so that x    5.
b r b r br

br br br br br br br br b r b r br br br br br



2 2
Hence, the length of each of the two legs is br br br br br br br br br 5 ft. br




39. The hypotenuse has length
b r br br br
40. Since br 2x  6m  x  br br br br br br
6 2
b r b r  3 2m,
br b r




 
2
2 4 2 in.  8in.
br b r b r br br br br
each leg has length 3 2 m. br br br br b r b r




41. Since the lengths of the two legs of the given30∘  60∘  90∘ triangle are x an
b r br br br br br br br br br br b r br b r br b r br br br




d 3 x, the shorter leg must have length x. Hence, using the given information,
br br b r b r b r b r b r b r br b r b r b r b r b r




we b r




know that x  5 m. Thus, the two legs have lengths 5 m and 5 3  8.66 m, and t
br b r br br br b r br br br br br b r br br b r b r br br br b r br




he hypotenuse has length 10 m.
br br br br br




42. Since the lengths of the two legs of the given 30∘  60∘  90∘ triangle are x a
b r br br br br br br br br br b r br br b r br b r br br br




nd 3 x, the shorter leg must have length x. Hence, using the given informatio
br br b r b r b r b r b r b r br b r b r b r b r b r




n, we b r




know that x  9ft. Thus, the two legs have lengths 9 ft. and 9 3 15.59 ft., and t
br b r br br br b r br br br br br b r br br b r b r br br br b r br




4

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
BrainBurst Stanford University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
346
Lid sinds
1 jaar
Aantal volgers
12
Documenten
526
Laatst verkocht
1 dag geleden
BrainBurst

best test banks in the market

4.4

58 beoordelingen

5
46
4
2
3
3
2
1
1
6

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen