100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Solutions Manual for Foundations of Mathematical Economics – Michael Carter – Complete Step-by-Step Solutions

Rating
-
Sold
-
Pages
412
Grade
A+
Uploaded on
01-05-2025
Written in
2024/2025

This document is the full solutions manual for Foundations of Mathematical Economics by Michael Carter. It provides detailed, step-by-step answers to exercises across all chapters, covering key topics such as set theory, linear algebra, optimization, game theory, comparative statics, and dynamic systems. This manual is ideal for students and instructors needing clear explanations and worked-out solutions for advanced economic theory and mathematical modeling problems.

Show more Read less
Institution
Foundations Of Mathematical Economics
Course
Foundations of Mathematical Economics











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Foundations of Mathematical Economics
Course
Foundations of Mathematical Economics

Document information

Uploaded on
May 1, 2025
Number of pages
412
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

Solutions Manual
Foundations of Mathematical Economics

Michael Carter

, ⃝ c 2001 Michael Carte
MLKMLKMLK MLK M L K




Solutions for Foundations of Mathematical Econom MLK M LK M L K M L K M L K r All rights reserved MLK MLK




ics



Chapter 1: M L K M L K Sets and Spaces M L K M L K




1.1
{1, 3, 5, 7 . . . }or {� ∈ � : � is odd }
MLK MLK MLK MLK MLK MLK MLK M L K MLK MLK MLK M L K ML K M L K M L K MLK




1.2 Every �∈ � also belongs to �. Every∈ � M L K M L K M L K M L K M L K M L K M L K




� also belongs to �. Hence �, � haveprecisely the same elements.
M L K M L K M L K M L K M LK M L K MLK M L K LK
M M L K M L K M L K




1.3 Examples of finite sets are MLK MLK M L K M L K




∙ the letters of the alphabet {A, B, C, . . . , Z }
M L K M L K M L K M L K M L K LK
M M L K M L K M L K M L K M L K MLK




∙ the set of consumers in an economy
M L K M L K M L K M L K M L K M L K




∙ the set of goods in an economy
M L K M L K M L K M L K M L K M L K




∙ the set of players in a ga MLK MLK MLK MLK MLK MLK




me.Examples of infinite sets ar
LK
M M LK M LK M L K M L K




e
∙ the real numbers ℜ MLK MLK MLK




∙ the natural numbers � M L K MLK M L K




∙ the set of all possible colorsMLK MLK MLK MLK MLK




∙ the set of possible prices of copper on the world market
M L K M L K M L K M L K M L K M L K M L K M L K M L K M L K




∙ the set of possible temperatures of liquid water.
M L K M L K M L K M L K M L K M L K M L K




1.4 � = {1, 2, 3, 4, 5, 6 }, � = {2, 4, 6 }.
MLK M LK MLK LK
M MLK MLK MLK MLK MLK MLK M LK M L K MLK LK
M MLK MLK MLK




1.5 The player set is � = {Jenny, Chris } . Their action spaces are
M L K M L K M L K M L K M L K MLK LK
M MLK MLK M LK M L K M L K M L K




�� = {Rock, Scissors, Paper }
M L K MLK LK
M MLK MLK MLK � = Jenny, Chris
M L K MLK MLK




1.6 The set of players is �{ = 1, 2 , . .}. , �
M L K M L K M L K M L K M L K M L K M L K MLK MLK M L K . The strategy space of each playe
MLK M L K M L K M L K M L K M L K




r is the set of feasible outputs
M L K M L K M L K MLK M L K M L K




�� = {�� ∈ ℜ + : �� ≤ �� }
MLK M LK LK
M MLK LK
M M L K MLK MLK LK
M MLK




where �� is the output of dam �.
M L K MLKM
LK MLKM
LK M L K M L K M L K M L K




3
1.7 The player set is � = {1, 2, 3}. There are 2 = 8 coalitions, namely
M L K M L K M L K M L K M L K MLK MLK MLK M LK M L K M L K M L K MLK M L K M L K




� (� ) = {∅ , {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
MLK M L K M L K MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK




10
There are 2 M L K M L K M L K coalitions in a ten player game. M L K M L K M L K M L K M L K





1.8 Assume that � ∈ (� ∪ �) . That is � ∈/ � ∪ � . This implies � ∈/ � and � ∈/ �, o
MLKM L K MLKMLK MLKMLK MLKMLK MLK MLK LK
M MLK MLKMLKMLK MLKMLK MLKMLK MLKMLK MLKMLK MLK LK
M MLK MLKMLKMLK MLKMLK MLKMLK MLKMLK MLKMLK MLKMLK MLKMLK MLKMLK MLKMLK MLK MLK




r � ∈ �� and � ∈ � �. Consequently, � ∈ �� ∩ � �. Conversely, assume � ∈ �� ∩ � �. T
MLK MLK MLK MLK M L K MLK MLK MLK M L K M L K MLK MLK MLK MLK MLK M L K M L K M L K MLK MLK MLK MLK MLK MLK




his implies that � ∈ � � and � ∈ �� . Consequently �∈/ � and �∈/ � and therefore
MLKMLK MLKMLK MLKMLK M L K LK
M MLKMLK MLKMLK M L K LK
M MLK MLKMLKMLK MLKMLK LK
M MLKMLK MLKMLK MLKMLK LK
M MLKMLK MLKM LK MLKMLK




�∈/ � ∪ �. This implies that � ∈ (� ∪ �)� . The other identity is proved similarly.
MLK M LK LK
M MLK MLK M L K MLKM
LK M L K M LK LK
M M LK LK
M MLK MLK M L K M L K M L K M L K M LK




1.9

� =� M LK MLK




�∈�

� =∅ MLK MLK




�∈�


1

, ⃝ c 2001 Michael Carte
MLKMLKMLK MLK M L K




Solutions for Foundations of Mathematical Econom MLK M LK M L K M L K M L K r All rights reserved MLK MLK




ics

�2
1




�1
-1 0 1




-1
2 2
Figure 1.1: The relation {(�, �) : � + � M L K MLK M L K M L K LK
M MLK MLK M L K M LK M LK M L K = 1} M L K MLK




1.10 The sample space of a single coin toss
M L K { is �,}� . The set of possible outco
M L K M L K M L K M L K M L K M L K M L K M L K MLK MLK M L K MLK M L K M L K M L K M L K




mes inthree tosses is the product
M L K LK
M M L K M L K M L K M L K




{
{�, �} ×{�, � } ×{�, � }= (�, �, �), (�, �, � ), (�, �, �),
MLK MLK LK
M MLK MLK LK
M MLK MLK LK
M M L K MLK MLK MLK MLK MLK MLK MLK MLK LK MLK
M


}
(�, �, � ), (�, �, �), (�, �, � ), (�, �, �), (�, �, � ) MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK




A typical outcome is the sequence (�, �, � ) of two heads followed by a tail.
M L K M L K M L K M L K M L K M L K MLK MLK MLK M L K M L K M L K M L K M L K M L K M L K




1.11

� ∩ℜ+� = {0}
M L K MLK
M L K
M L K




where 0 = (0, 0 , . . . , 0) is the production plan using no inputs and producing no outputs.
MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK M LK MLK MLK MLK MLK




To see this, first note that 0 is a feasible production plan. Therefore, 0 ∈
M L K M L K M L K M L K M L K M L K M L K M L K M L K M L K M L K M L K M L K M L K LK
M




� . Also, MLK M L K




0 ∈ ℜ �+ and therefore 0 ∈ � ∩+ℜ � .
M L K MLK
M L K
M L K M L K M L K MLK M L K MLK
M LK




To show that there is no other feasible production plan in ℜ�+, we assume the contrary.
MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLKMLKMLKMLKMLK MLK MLK MLK MLK MLK MLK




That is, we assume there is some feasible production plan y ∈ ℜ + �∖ { } 0 . This impl
MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLKMLKMLKMLKMLKMLKMLKMLK
MLK M L K MLKMLKMLKMLKMLKMLKMLK
M L K MLKMLK MLKMLK MLK




ies the existence of a plan producing a positive output with no inputs. This technologi
MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK




cal infeasible, so that �∈/ � .
MLK M L K M L K M L K LK
M M L K MLK




1.12 1. Let x ∈ � (�). This implies that (�, − x) ∈ � . Let x′ ≥ x. Then (�, − x′ ) ≤
MLKMLK MLKM
LK ML K LK
M MLK MLKMLK MLKM
LK MLKM
LK MLKM
LK MLK M LK LK
M MLK MLKMLK MLKM
LK M LK LK
M MLKM L K MLKM
LK MLK MLK




(�, − x) and free disposability implies that (�, − x′ ) ∈ � . Therefore x′ ∈ � (�).
MLK M L K M L K M L K M L K MLKM
LK M L K MLK MLK LK
M MLK MLK M L K MLK LK
M MLK




2. Again assume x ∈ � (�). This implies that (�, − x) ∈ � . By free disp
MLKM L K MLKM LK MLKM LK MLKM L K MLK MLK MLKMLKMLKMLK MLKM L K MLKM L K MLKM L K MLK MLKM L K MLK MLK MLKMLKMLKMLK MLKM LK MLKM L K




osal, (� ′ , − x) ∈ � for every � ′ ≤ � , which implies that x ∈ � (� ′ ). � (� ′ ) ⊇ � (�).
MLK MLK MLK LK
M MLKM L K M L K M LK MLK LK
M M L K M L K MLKM
LK M L K MLK LK
M MLK MLKMLK MLK MLK LK
M MLK




1.13 The domain of “<” is {1, 2}= � and the range is {2, 3}⫋ � .
M L K M L K M LK M LK M L K MLK LK
M MLK M L K M L K M L K M LK M L K MLK LK
M MLK MLK




1.14 Figure 1.1. MLK




1.15 The relation “is strictly higher than” is transitive, antisymmetric and asym
M L K M L K M L K M L K M L K M L K M L K M L K M L K M L K




metric.It is not complete, reflexive or symmetric.
LK
M M L K M L K M L K M L K M LK M L K




2

, ⃝ c 2001 Michael Carte
MLKMLKMLK MLK M L K




Solutions for Foundations of Mathematical Econom MLK M LK M L K M L K M L K r All rights reserved MLK MLK




ics
1.16 The following table lists their respective properties.
M LK M LK M LK M L K M L K MLK




< ≤√ MLKM L K

√=
reflexive ×
√ √ √
MLKM L K



transitive MLKM L K




symmetric √ √
×
MLKM L K





MLKM L K




asymmetric × ×
anti-symmetric √ √ MLKM L K
MLKM L K


√ √ M L K M L K


complete ×
Note that the properties of symmetry and anti-symmetry are not mutually exclusive.
M L K M L K M L K MLK M L K M L K M LK M LK MLK M L K M L K




∼ an equivalence relation of a set � =∕ . ∅That is, the relation is∼ reflexive, sy
1.17 Let be MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK L
M M KL K MLK MLK MLK MLK MLK MLK




mmetric and transitive. We first show that every � �∈ belongs to some equivalence cl
MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK




ass. Let � be any element in � and let
M L K ∼ (�) be the class of elements equivalen
MLK MLK MLK MLK M LK MLK M L K M LK MLK M LK M LK M LK MLK MLK MLK




t to
MLK




�, that is MLK MLK




∼(�) ≡{� ∈ � : � ∼ � } M L K MLK MLK M L K MLK M L K M L K M L K MLK MLK




Since ∼ is reflexive, �∼ � and so �∈ ∼ (�). Every �∈ MLK MLK MLK MLK MLK MLK M L K M LK




� belongs to some equivalenceclass and therefore M L K M L K M L K M L K KM
L M L K M L K




� = ∼(�) M L K




�∈�

Next, we show that the equivalence classes are either disjoint
M LK M L K M L K M L K M L K M L K M L K M L K M L K M L K or identic M L K




al, that is MLKM L K M L K




∼(�) ∕= ∼(�) if and only if f∼(�) ∩∼ (�) = ∅ .
MLK MLK M L K M L K M L K M L K M L K MLK LK
M MLK MLK




First, assume ∼(�) ∩∼ (�) = ∅ . Then � ∈ ∼ (�) but ��/∈ ∼(
M L K M LK MLK LK
M MLK MLK MLK M L K M LK LK
M M L K MLKM
LK ). Therefore ∼(�) ∕= ∼(�).
MLK M L K MLK MLK




Conversely, assume ∼(�) ∩∼ (�) ∕= ∅ and let � ∈ ∼ (�) ∩∼ (�). Then � ∼ � and bysymmet
MLKMLK MLKMLK MLK LK
M MLKMLK MLKMLK MLK MLKMLK MLKMLK MLKMLK MLK MLK LK
M MLKMLKMLK MLKMLK MLKMLK M
LK MLKMLK MLKMLK M LK




ry � ∼ �. Also � ∼ � and so by transitivity � ∼ �. Let � be any element
M L K M L K MLK MLKMLKMLK M L K M L K MLK MLK MLK M L K M L K MLK M L K MLK MLKMLKMLK MLK M L K M L K MLK MLK




in ∼(�) so that � ∼ �. Again by transitivity � ∼ � and therefore � ∈ ∼ (�). Hence
MLKMLK MLKMLK MLKMLK MLKMLK MLKMLK M
LK MLKMLKMLK MLKMLK MLKMLK MLKMLK MLKMLK MLK MLKMLK MLKMLK MLKMLK MLKMLK MLK MLKMLKMLK




∼(�) ⊆ ∼ (�). Similar reasoning implies that ∼(�) ⊆ ∼ (�). Therefore ∼(�) = ∼(�).
MLK LK
M MLK MLKM
LK MLK MLKM
LK M L K MLK LK
M MLK M L K MLK MLK




We conclude that the equivalence classes partition �.
MLK MLK MLK MLK MLK MLK MLK




1.18 The set of proper coalitions is not a partition of the set of players, since any pl
MLK ML K M LK M LK M LK M LK MLK MLK MLK M LK MLK M LK M LK M LK MLK MLK




ayercan belong to more than one coalition. For example, player 1 belongs to the c
LK
M MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK MLK




oalitions
{1}, {1, 2}and so on. M L K MLK LK
M M L K M L K




1.19

� ≻� =⇒ � ≿ � and � ∕≿ �
MLK MLK M L K M L K MLK M LK M L K M L K M L K M LK




� ∼ � =⇒ � ≿ � and � ≿ �
M L K MLK M L K M L K M L K MLK M L K M L K M L K MLK




Transitivity of ≿ implies � ≿ � . We need to show that � ∕≿ � . Assume otherwise, tha
MLK MLK MLK MLK MLK MLK MLK MLK M LK MLK MLK MLK M LK MLK MLK MLK MLK




tis assume � ≿ � This implies � ∼� and by transitivity � ∼�. But this im
LK
M M L K M L K M L K M LK M L K M L K M L K M L K LK
M M L K M L K M L K M L K M L K LK
M M L K M L K M L K



plies that M L K




� ≿ � which contradicts the assumption that � ≻� . Therefore we conclude that � ∕≿ �
M L K MLK M L K M L K M L K M L K M L K M L K M L K MLK MLK M L K M L K M L K M L K M L K ML K




and therefore � ≻� . The other result is proved in similar fashion.
M L K M L K MLK LK
M MLK M L K M L K M L K M L K M L K M L K M L K




1.20 asymmetric Assume � ≻�. M L K M L K MLK LK
M




Therefore

while


3
$23.49
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
certifiedlecturer

Get to know the seller

Seller avatar
certifiedlecturer stuvia
View profile
Follow You need to be logged in order to follow users or courses
Sold
4
Member since
7 months
Number of followers
1
Documents
263
Last sold
1 month ago
TEST BANKS HUBS A+

IF IN NEED FOR QUALITY TEST BANKS AND STUDY MATERIALS LOOK NO FURTHER !! OUR PRODUCTS ARE OF QUALITY SO BUY WITHOUT DOUBT . EXPECT TOP FIRST HAND CUSTOMER SERVICE BECAUSE WE ARE HERE FOR YOU .AT TEST BANKS HUBS !! YOUR HOME FOR QUALITY STUDY MATERIALS!!

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions