100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Solution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill

Rating
-
Sold
4
Pages
545
Grade
A+
Uploaded on
20-02-2025
Written in
2024/2025

Solution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill PDF DOWNLOAD

Institution
SM+TB
Module
SM+TB











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
SM+TB
Module
SM+TB

Document information

Uploaded on
February 20, 2025
Number of pages
545
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

A First Course in Differential
Equations with Modeling
Applications, 12th Edition by
Dennis G. Zill




Complete Chapter Solutions Manual are
included (Ch 1 to 9)




** Immediate Download
** Swift Response
** All Chapters included

,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS W ith MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
SO SO SO SO SO SO S
O S
O SO SO SO SO SO




Introduction to Differential Equations S O S O S O




SolutionandAnswerGuide O
S O
S O
S




ZILL,DIFFERENTIALEQUATIONSWITHMODELINGAPPLICATIONS2024, 9780357760192;
O
S O
S O
S O
S O
S O
S S O O
S




CHAPTER #1:INTRODUCTION TO DIFFERENTIALEQUATIONSSO O
S SO SO O
S




TABLEOFCONTENTS S
O S
O




End of Section Solutions........................................................................................................................................................................................... 1
S O S O S O




Exercises 1.1 .............................................................................................................................................................................................................................................. 1
S O




Exercises 1.2 .......................................................................................................................................................................................................................................... 14
S O




Exercises 1.3 ..........................................................................................................................................................................................................................................22
S O




Chapter1 in Review Solutions........................................................................................................................................................30
S
O SO SO SO




ENDOFSECTIONSOLUTIONS S
O S
O S
O




EXERCISES 1.1 S O




1. Second order; linear S O S O




2. Third order; nonlinear because of (dy/dx) 4 S O S O S O S O S O




3. Fourth order; linear S O S O




4. Second order; nonlinear because of cos(r + u) S O S O S O S O S O S O SO




√ SO




5. Second order; nonlinear because of (dy/dx) 2 or S O S O S O S O S O
SO S O



1 + (dy/dx)2 S O S O




6. Second order; nonlinear because of R2 S O S O SO S O S O




7. Third order; linear S O S O




8. Second order; nonlinear because of ẋ2 S O S O SO S O S O O
S




9. First order; nonlinear because of sin ( dy/dx)
S O S O S O S O S O SO




10. First order; linear S O S O




11. Writing the differential equation in the form x(dy/dx) + y2 = 1, we see that it is nonlinear in y beca
SO S O S O SO SO SO S O S O S O
S O



S O SO SO SO SO SO SO S O O
S SO




use of y2. However, writing it in the form (y2 —1 )(dx/dy) + x = 0, we see that it is linear in x.
SO SO SO SO SO SO SO SO S O
S O



O
S SO SO SO S O SO SO SO SO SO S O S O S O




12. Writing the differential equation in the form u(dv/du) + (1 + u)v = ueu we see that it is linearinv.
SO SO SO SO SO SO SO SO SO SO SO S O S O
S O



SO SO SO SO S O O
S O
S O
S




However,writingiti nthef orm(v + uv —ueu)(du/dv) +u = 0,w es eethatitis nonlinear in u. O
S O
S O
S O
S O
S O
S O
S SO SO O
S O
S O
S SO SO O
S O
S O
S O
S O
S S O S O S O




13. Fromy=e − O
S O
S O
S
x/2 we obtain yj = — 1e−
SO SO
S O

SO O
S
O
S
x/2
. Then 2yj + y = —e−
O
S SO
S O

O
S S O SO
x/2
+ e− SO
x/2 = 0. SO




2




1

,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS W ith MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
SO SO SO SO SO SO S
O S
O SO SO SO SO SO




Introduction to Differential Equations S O S O S O




6 6—
14. From y = S O S O — e 20t weobtain dy/dt = 24e−20t,s othat SO

SO SO SO SO
O
S
O
S O
S




5 5
dy +20y = 24e−20t 6 6 −20t SO S O




+ 20 — e = 24.
O
S SO SO




S O
SOS O




dt 5 5
S O




15. Fromy = e3x cos2x weobtainyj = 3e3x cos2x—2e3x sin2x andyjj = 5e3x cos2x— O
S SO SO
SO



O
S O
S O
S O
S
S O

SO
SO



O
S
SO



O
S O
S O
S
S O

SO
SO



O
S




12e3x sin2x, so that yjj — 6yj + 13y = 0. SO



O
S S O S O S O
S O

SO
S O

SO S O S O




j
16. From y = —c osxln(sec x + tan x ) we obtain y = —1 + sin xln(secx + tanx) and
SO SO S O O
S O
S O
S O
S SO O
S O
S SO SO SO SO S O
SO O
S SO O
S O
S O
S O
S SO O
S SO




jj jj
y = tanx+ cos xln(secx+ tanx). Then y + y = tanx.
SO S O SO O
S O
S SO SO O
S O
S O
S O
S O
S SO SO SO S O O
S SO S O O
S




17. The domain of the function, found by solving x+2 ≥ 0, is [—2, ∞). From yj = 1+2(x+2) −1/2
S O S O S O S O S O S O S O S O S O S O S O S O SO S O S O
SO S O

S O




we have S O




j 1/2 −
(y —x)y = (y — x)[1+ (2(x+ 2)
SO
S O SO SO SO O
S O
S O
S SO S OS O
SO




]

=y—x+2(y—x)(x+ 2)−1/2
O
S O
S O
S O
S O
S O
S
O
S O
S




= y — x + 2[x + 4(x + 2) 1/2 —x](x + 2)−1/2
SO S O SO SO S O SO S O SO S O
S OS O




S O SO




=y —x + 8(x + 2)1/2(x + 2)−1/2 = y — x + 8.
O
S SO O
S O
S SO O
S O
S SO SO
S O



S O SO SO O
S SO




An interval of definition for the solution of the differential equation is (—
S O S O S O S O S O S O S O S O S O S O S O S O




2, ∞) because yj is not defined at x = —2.
SO S O S O
S O

S O S O S O S O S O S O




18. Since tan x is not defined for x = π/2 + nπ, n an integer, the domain of y = 5 tan 5x is
SO SO O
S SO SO SO SO S O S O S O S O SO SO SO SO SO SO SO SO S O S O O
S SO SO




{x 5x /= π/2+nπ} SO S O O
S O
S O
S SO




or{ x x /= π/10+nπ/5}. Fromy j= 25s ec 25xw ehave
O
S SO S O SO SO O
S O
S O
S SO S O SO O
S SO O
S SO




j
y = 25(1 + tan2 5x)= 25 + 25 tan2 5x = 25 + y 2.
S O
S O S O



SO SO SO O
S SO O
S SO O
S SO SO O
S SO




An interval ofdefinition forthe solutionofthedifferential equationis (—π/10,π/10). An-
O
S O
S O
S O
S O
S O
S O
S O
S O
S O
S O
S O
S O
S O
S




Sother interval is (π/10, 3π/10), and so on.
O SO SO SO O
S S O SO SO




19. The domain of the function is {x 4 — x2 SO S O S O S O SO S O SO SO S O S O SO /= 0} or {x
S O SO SO x /= —2 orx /= 2} .Fromy j =
S O S O O
S O
S S O S O O
S O
S
S O




2x/(4 — x2)2 we have S O SO
S O



S O




1 2
= 2xy2.
yj = 2x SOS O S O




4—x2
S O




OS OS




An interval of definition for the solution of the differential equation is (—2, 2) . Other inter-
S O S O S O S O S O S O S O S O S O S O S O S O SO S O S O




vals are (—∞, —2) and (2, ∞) .

S O S O S O S O S O S O S O SO




20. The function is y = 1/ 1 — sin x , whose domain is obtained from 1 — sin x /= 0 or sin x /= 1.
SO S O S O S O S O SO SO O
S SO S O S O S O S O SO S O S O SO O
S S O S O SO S O O
S S O S O




Thus, the domain is {x x/= π/2+ 2nπ}. From y j= — (11 —sinx) −3/2
2
(— cosx) we have
SO SO O
S O
S SO S O O
S S O O
S SO SO SO S O SO S O SO O
S O
S S O
S O



O
S O
S SO SO




2yj = (1 —sinx) −3/2 cosx= [(1 —sinx) −1/2] 3 cosx = y3 cosx.
S O

O
S O
S O
S O
S
SO



O
S O
S SO O
S O
S O
S
SO



O
S SO O
S
SO



O
S




An interval of definition for the solution of the differential equation is (π/2, 5π/2) . Another one is
S O S O S O S O S O S O S O S O S O S O S O S O SO S O S O S O S O




(5π/2, 9π/2), and so on. SO S O S O S O




2

, Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS W ith MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
SO SO SO SO SO SO S
O S
O SO SO SO SO SO




Introduction to Differential Equations S O S O S O




21. Writing ln(2X — 1) — ln(X — 1) = t and differentiating
SO S O S O S O S O S O S O SOS O SOS O SO SO
x

implicitly we obtain S O S O 4


— =1 S O 2
2X — 1 dt SO O
S S O
X —1 dt O
S O
S S O




t
2 1 dX –4 –2 2 4
— = 1
SO S O




X —1 dt
O
S




2X —1
S O




O
S O
S SO SO




–2


–4 O
S




dX
= —(2X —1)(X — 1) = (X — 1)(1 — 2X).
dt
SO SO O
S SO O
S SO SO SO O
S SO O
S




S O




Exponentiating both sides of the implicit solution we obtain S O S O S O S O S O S O S O S O




2X— O
S




1 t X —1
=e
O
S O
S SO O
S
S O



O
S




2X — 1 = Xet — et SO SO SO SO
S O



SO




(et —1) =(et —2)X SO



O
S O
S O
S
SO



O
S




et 1
X= .
et — 2
S O S O


S O

SO SO




Solving et — 2 = 0 we get t = ln 2. Thus, the solution is defined on (—
SO
S O



SO SO S O SO SO SO S O S O O
S S O SO SO SO SO S O SO




∞, ln 2) or on (ln 2,∞). The graph of the solution defined on (—
SO SO SO SO SO SO O
S S O S O S O S O S O S O S O S O




∞, ln 2) is dashed, and the graph of the solution defined on (ln 2, ∞) is solid.
SO SO S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O




22. Implicitly differentiating the solution, we obtain S O S O S O S O S O
y

2 SOS O
dy dy 4

—2x — 4xy + 2y = 0
dx dx
SO S O SO O
S SO S O SO




S O S O


2
—x2 dy — 2xydx+ ydy = 0 S O



O
S O
S O
S O
S SO O
S SO SO




x
2xydx + (x2 —y)dy = 0. O
S O
S SO
S O



O
S SO SO
–4 O
S –2 2 4

–2
Using the quadratic formula to solve y2 — 2x2 y — 1 = 0
SO SO S O SO SO SO
SO S O



S O S O S O SOSO SOS O




√ √
fory,w egety = 2x2 ± 4x 4 + 4 /2 = x2 ± x4 +1.
SO SO



SO SO SO
S O SO




–4
O
S O
S O
S O
S S O SO SOS O S O S O O
S O
S





O
S




Thus, two explicit solutions are y1 = x2 +
SO




x4 + 1 and
S O


S O
SO SO SO SO SO S O
SOS O





SO S O




OO
S




y2 = x2 — x4 + 1 . Both solutions are defined on (—∞, ∞).
SOS O
S O
SOS O

S O


S O O
S S O S O S O S O S O S O SO




The graph of y1(x) is solid and the graph of y2 is dashed.
S O S O S O S O S O S O S O S O S O S O
SOS O
S O




3

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
TheeCHANCELLOR EXAMS
View profile
Follow You need to be logged in order to follow users or courses
Sold
27
Member since
10 months
Number of followers
2
Documents
334
Last sold
2 weeks ago
EXAMS CENTRE INC. !!!!

TOP A+ GRADED EXAMS, TESTBANKS, SOLUTION MANUALS & OTHER STUDY MATERIALS SHOP!!!! 100% GUARANTEED Success When you purchase our documents, Please leave reviews so we can meet up to your satisfaction .''EXAMS CENTRE INC.'' your good grades is our top priority!!! BUY WITHOUT DOUBT!!!!

2.8

4 reviews

5
1
4
0
3
1
2
1
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions