Instructor's Solutions Manual
to Accompany
Digital Signal Processing
using MATLAB
4th EDITION, INTERNATIONAL EDITION
VINAY K. PROAKIS
JOHN G. PROAKIS
,Contents
2 Discrete-Time Signals and Systems 1
3 Discrete-Time Fourier Transform 55
4 The ´-Transform 129
5 The Discrete-Time Fourier Transform 179
6 Digital Filter Structures 259
7 FIR Filter Design 337
8 IIR Filter Design 415
9 Sampling-Rate Conversion 499
10 Finite Word-Length Effects 613
3
© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
,Chapter 2
Discrete-Time Signals and Systems
P2.1 Generate the following sequences using the basic M ATLAB signal functions and the basic M ATLAB signal operations
discussed in this chapter. Plot signal samples using the stem function.
1. x1 .n/ D 3ı.n C 2/ C 2ı.n/ ı.n 3/ C 5ı.n 7/, 5 n 15
% P0201a: x1(n) = 3*delta(n + 2) + 2*delta(n) - delta(n - 3) +
% 5*delta(n - 7), -5 <= n <= 15.
clc; close all;
x1 = 3*impseq(-2,-5,15) + 2*impseq(0,-5,15) - impseq(3,-5,15) + 5*impseq(7,-5,15);
Hf_1 = figure; set(Hf_1,’NumberTitle’,’off’,’Name’,’P0201a’); n1 = [-5:15];
Hs = stem(n1,x1,’filled’); set(Hs,’markersize’,2);
axis([min(n1)-1,max(n1)+1,min(x1)-1,max(x1)+1]);
xlabel(’n’,’FontSize’,LFS); ylabel(’x_1(n)’,’FontSize’,LFS);
title(’Sequence x_1(n)’,’FontSize’,TFS);
set(gca,’XTickMode’,’manual’,’XTick’,n1,’FontSize’,8);
print -deps2 ../EPSFILES/P0201a;
The plots of x1 .n/ is shown in Figure 2.1.
Sequence x1(n)
6
5
4
3
x1(n)
2
1
0
ï1
ï2
ï5 ï4 ï3 ï2 ï1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n
Figure 2.1: Problem P2.1.1 sequence plot
1
© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
, 2 S OLUTIONS M ANUAL FOR DSP USING M ATLAB (4 TH E DITION )
5
X
jkj
2. x2 .n/ D e ı.n 2k/, 10 n 10.
kD 5
% P0201b: x2(n) = sum_{k = -5}^{5} e^{-|k|}*delta(n - 2k), -10 <= n <= 10
clc; close all;
n2 = [-10:10]; x2 = zeros(1,length(n2));
for k = -5:5
x2 = x2 + exp(-abs(k))*impseq(2*k ,-10,10);
end
Hf_1 = figure; set(Hf_1,’NumberTitle’,’off’,’Name’,’P0201b’);
Hs = stem(n2,x2,’filled’); set(Hs,’markersize’,2);
axis([min(n2)-1,max(n2)+1,min(x2)-1,max(x2)+1]);
xlabel(’n’,’FontSize’,LFS); ylabel(’x_2(n)’,’FontSize’,LFS);
title(’Sequence x_2(n)’,’FontSize’,TFS);
set(gca,’XTickMode’,’manual’,’XTick’,n2);
print -deps2 ../EPSFILES/P0201b;
The plots of x2 .n/ is shown in Figure 2.2.
Sequence x2(n)
2
1.5
1
x2(n)
0.5
0
−0.5
−1
−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
n
Figure 2.2: Problem P2.1.2 sequence plot
© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
to Accompany
Digital Signal Processing
using MATLAB
4th EDITION, INTERNATIONAL EDITION
VINAY K. PROAKIS
JOHN G. PROAKIS
,Contents
2 Discrete-Time Signals and Systems 1
3 Discrete-Time Fourier Transform 55
4 The ´-Transform 129
5 The Discrete-Time Fourier Transform 179
6 Digital Filter Structures 259
7 FIR Filter Design 337
8 IIR Filter Design 415
9 Sampling-Rate Conversion 499
10 Finite Word-Length Effects 613
3
© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
,Chapter 2
Discrete-Time Signals and Systems
P2.1 Generate the following sequences using the basic M ATLAB signal functions and the basic M ATLAB signal operations
discussed in this chapter. Plot signal samples using the stem function.
1. x1 .n/ D 3ı.n C 2/ C 2ı.n/ ı.n 3/ C 5ı.n 7/, 5 n 15
% P0201a: x1(n) = 3*delta(n + 2) + 2*delta(n) - delta(n - 3) +
% 5*delta(n - 7), -5 <= n <= 15.
clc; close all;
x1 = 3*impseq(-2,-5,15) + 2*impseq(0,-5,15) - impseq(3,-5,15) + 5*impseq(7,-5,15);
Hf_1 = figure; set(Hf_1,’NumberTitle’,’off’,’Name’,’P0201a’); n1 = [-5:15];
Hs = stem(n1,x1,’filled’); set(Hs,’markersize’,2);
axis([min(n1)-1,max(n1)+1,min(x1)-1,max(x1)+1]);
xlabel(’n’,’FontSize’,LFS); ylabel(’x_1(n)’,’FontSize’,LFS);
title(’Sequence x_1(n)’,’FontSize’,TFS);
set(gca,’XTickMode’,’manual’,’XTick’,n1,’FontSize’,8);
print -deps2 ../EPSFILES/P0201a;
The plots of x1 .n/ is shown in Figure 2.1.
Sequence x1(n)
6
5
4
3
x1(n)
2
1
0
ï1
ï2
ï5 ï4 ï3 ï2 ï1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n
Figure 2.1: Problem P2.1.1 sequence plot
1
© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
, 2 S OLUTIONS M ANUAL FOR DSP USING M ATLAB (4 TH E DITION )
5
X
jkj
2. x2 .n/ D e ı.n 2k/, 10 n 10.
kD 5
% P0201b: x2(n) = sum_{k = -5}^{5} e^{-|k|}*delta(n - 2k), -10 <= n <= 10
clc; close all;
n2 = [-10:10]; x2 = zeros(1,length(n2));
for k = -5:5
x2 = x2 + exp(-abs(k))*impseq(2*k ,-10,10);
end
Hf_1 = figure; set(Hf_1,’NumberTitle’,’off’,’Name’,’P0201b’);
Hs = stem(n2,x2,’filled’); set(Hs,’markersize’,2);
axis([min(n2)-1,max(n2)+1,min(x2)-1,max(x2)+1]);
xlabel(’n’,’FontSize’,LFS); ylabel(’x_2(n)’,’FontSize’,LFS);
title(’Sequence x_2(n)’,’FontSize’,TFS);
set(gca,’XTickMode’,’manual’,’XTick’,n2);
print -deps2 ../EPSFILES/P0201b;
The plots of x2 .n/ is shown in Figure 2.2.
Sequence x2(n)
2
1.5
1
x2(n)
0.5
0
−0.5
−1
−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
n
Figure 2.2: Problem P2.1.2 sequence plot
© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.