, Ch 12 2 .
.
-
Vectors , Vector Addition
Magnitude/Normalization
V= [V V2 V3]
, , ,
DEF : (vl =
/V ,
2
+ v22 V+
↳ Direction :
R =
tan" (2)
Vector Operators
1.) Vector Addition U= ( , , 42) v= (V V2]
,,
FORMULA :
y+v = [u ,
+ V
,, z + Vz)
↳ i e . .
tip to tail method
eu =
<3 , 4) v= <1 2) ,
U +v = (3 +1 ,
4 + 2) =
44 , 6)
2) Scalar Multiplication
V= (vi ,2)
FORMULA : for Scalar <Erector
(v =
[cv ,
+
cVz]
c= 3 <1 2)
e v= ,
3V =
73 .
1
,
3 .
27 =
(3 67 ,
, Ch 12 3 Dot Product
. .
-
The Dot Product
DEF : =
(n , ,
427 =
<V N2) , ,
Y Y . =
1 , V, +
12V
Geometric
-
Interpretation
8
↳ the dot product relates to the angle
between the vectors :
. = /cos8
* F i. = 0 than the vectors are
: u =
(2 3) ,
Y 14 17
=
,
u 8 .
=
2 4 . + 3 1 . = 1
me
i =z
cost +
=
21
2 (2 37 41 07
=
,
·
,
, Vector Projection
DEF : the projection of rector a onto v :
U
u v
↳ Projec
4jection
.
=
lar
e i (3 =
,
47 =
(1 27
,
7
-
u V=.
3+ 8 = 11
Iv/2 = 12 2 +
2
=
5
projru = (1 2) =
,
Scalar Projection
* AKA component
DEF : the component of a
along v:
↳ H V
.
comput =
iv.
.
-
Vectors , Vector Addition
Magnitude/Normalization
V= [V V2 V3]
, , ,
DEF : (vl =
/V ,
2
+ v22 V+
↳ Direction :
R =
tan" (2)
Vector Operators
1.) Vector Addition U= ( , , 42) v= (V V2]
,,
FORMULA :
y+v = [u ,
+ V
,, z + Vz)
↳ i e . .
tip to tail method
eu =
<3 , 4) v= <1 2) ,
U +v = (3 +1 ,
4 + 2) =
44 , 6)
2) Scalar Multiplication
V= (vi ,2)
FORMULA : for Scalar <Erector
(v =
[cv ,
+
cVz]
c= 3 <1 2)
e v= ,
3V =
73 .
1
,
3 .
27 =
(3 67 ,
, Ch 12 3 Dot Product
. .
-
The Dot Product
DEF : =
(n , ,
427 =
<V N2) , ,
Y Y . =
1 , V, +
12V
Geometric
-
Interpretation
8
↳ the dot product relates to the angle
between the vectors :
. = /cos8
* F i. = 0 than the vectors are
: u =
(2 3) ,
Y 14 17
=
,
u 8 .
=
2 4 . + 3 1 . = 1
me
i =z
cost +
=
21
2 (2 37 41 07
=
,
·
,
, Vector Projection
DEF : the projection of rector a onto v :
U
u v
↳ Projec
4jection
.
=
lar
e i (3 =
,
47 =
(1 27
,
7
-
u V=.
3+ 8 = 11
Iv/2 = 12 2 +
2
=
5
projru = (1 2) =
,
Scalar Projection
* AKA component
DEF : the component of a
along v:
↳ H V
.
comput =
iv.