100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

LINEAR ALGEBRA EXAM 3 T/F PRACTICE EXAM QUESTIONS AND ANSWERS

Beoordeling
-
Verkocht
-
Pagina's
5
Cijfer
A+
Geüpload op
01-12-2024
Geschreven in
2024/2025

LINEAR ALGEBRA EXAM 3 T/F PRACTICE EXAM QUESTIONS AND ANSWERS

Instelling
LINEAR ALGEBRA
Vak
LINEAR ALGEBRA









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
LINEAR ALGEBRA
Vak
LINEAR ALGEBRA

Documentinformatie

Geüpload op
1 december 2024
Aantal pagina's
5
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

LINEAR ALGEBRA EXAM 3 T/F
PRACTICE EXAM QUESTIONS AND
ANSWERS
A set of vectors: {v1, v2, v3, ... vn} is said to be linearly independent when ... - Answer-
the vector equation: x1v1 + x2v2+...xpvp = 0 (where the x's are constants and the v's
are vectors) has only trivial solutions. so matrix equation Ax has only trivial solutions.

non-trivial solutions exists means... - Answer-implies that there are infinitely many
solutions, so when a column has no pivot, the system has one free variable (and is also
dependent system)

trivial solutions exists means... - Answer-the zero vector is a solution

a pivot positions is - Answer-after row reduction, the position in a matrix contains a
leading one

inconsistant matrix - Answer-if it has no solutions

consistant matrix - Answer-a system which has at least one solution is said to be
consistant

A set of vectors is said to be linearly dependent when - Answer-a nontrival solutions
exists

standard basis vectors are linearly independent? - Answer-Yes, because the matrix A=
[e1,e2,e3,...en] is really In where In x = 0 has only trival solution with vector x=0 and
matrix In is the identity matrix.

And the Standard vectors for a basis of R^n and they are linearly independent

Fundamental Theorem of Linear Algebra: Part I. - Answer-for an m×n matrix A:
dim(Col(A))+dim(Nul(A)) = n.

basic theorem: for an m×n matrix A: - Answer-1) the columns of a matrix A
corresponding to the pivot columns of rref[A 0] form a basis for Col(A),

2) the dimension of Nul(A) is the number of free variables in the equation Ax=0,

3) the dimension of Col(A) is the number of basic variables in the equation Ax=0.

Basis - Answer-A basis for a vector space is a sequence of vectors that form a set that
is linearly independent and that spans the space.

, Span - Answer-the span of vectors v1, v2, ... , vn is the set of linear combinations: c1v1
+ c2v2 + ... + cnvn and that this is in vector space.

Some other simple criteria for linear independence we met earlier will be also be useful:
- Answer-(1) a set {v} containing only one non-zero vector is linearly independent
because x1v=0 only if x1=0,

(2) a set {v1,v2} containing two vectors is linearly dependent if and only if v2 is a scalar
multiple of v1 because
x1v1+x2v2=0 → v1= −(x2/x1)v2 or v2= −(x1/x2)v1
unless x1=x2=0,

(3) any set {v1,...,vk−1,0,vk+1,...,vp} containing the zero vector is linearly dependent
because:

c1v1+...+ck−1vk−1+ck0+ck+1vk+1+⋯+cpvp = 0

when cj=0 for j≠k but ck=1.

a set B={v1,v2,...,vp} of vectors is said to be a BASIS for a subspace H of R^n when... -
Answer-(1) H contains {v1,v2,...,vp},
(2) H = Span{v1,v2,...,vp},
(3) {v1,v2,...,vp} is linearly independent.

subspace of R^n is... - Answer-is a vector space that is a subset of some other (higher-
dimension) vector space.

Basis Property: - Answer-when a set B={v1,v2,...,vp} of vectors is a BASIS for a
subspace H of R^n, then each x in H has a UNIQUE representation: x = c1v1+c2v2+...
+cpvp in terms of the basis vectors.

find a basis for R^n - Answer-Find the associated augmented matrix for Ax=0 and then
you use the # of pivot columns of rref(A0) to be the basis of the Col(A) or the # of free
variables to be the basis of Nul(A)

The null space of an m x n matrix A, written as Nul A, is the...? - Answer-set of all
solutions to the
homogeneous equation Ax = 0, using free variable terms s and t if needed to then find a
solutions of the form Null(A)=Span{v1,v2}

Col (A) is ...? - Answer-The column space of an mxn matrix A (Col A) is the set of all
linear combinations of the
columns of A.
If A = {a1 ... an} , then Col(A)= Span {a1, ..., an}

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
biggdreamer Havard School
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
248
Lid sinds
2 jaar
Aantal volgers
68
Documenten
17956
Laatst verkocht
2 weken geleden

4.0

38 beoordelingen

5
22
4
4
3
6
2
2
1
4

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen