100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

 Edexcel A Level 2022 PAPER 1: Pure Mathematics 1

Beoordeling
-
Verkocht
-
Pagina's
48
Cijfer
A+
Geüpload op
24-06-2023
Geschreven in
2022/2023

 Edexcel A Level 2022 PAPER 1: Pure Mathematics 1

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Study Level
Publisher
Subject
Course

Documentinformatie

Geüpload op
24 juni 2023
Aantal pagina's
48
Geschreven in
2022/2023
Type
Tentamen (uitwerkingen)
Bevat
Alleen vragen

Onderwerpen

Voorbeeld van de inhoud

S
IC
AT
EM
Please check the examination details below before entering your candidate information
TH



Candidate surname Other names
MA




Centre Number Candidate Number




Pearson Edexcel Level 3 GCE
Paper
Time 2 hours
reference 9MA0/01
 
Mathematics
Advanced
PAPER 1: Pure Mathematics 1

You must have: Total Marks
Mathematical Formulae and Statistical Tables (Green), calculator


Candidates may use any calculator allowed by Pearson regulations.
Calculators must not have the facility for symbolic algebra manipulation,
differentiation and integration, or have retrievable mathematical
formulae stored in them.
Instructions
•• Use black ink or ball-point pen.
If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
• Fill in the boxes at the top of this page with your name,
centre number and candidate number.
• Answer all questions and ensure that your answers to parts of questions
are clearly labelled.
• Answer the questions in the spaces provided
– there may be more space than you need.
• You should show sufficient working to make your methods clear. Answers
without working may not gain full credit.
• Inexact
stated.
answers should be given to three significant figures unless otherwise

Information
•• AThere
booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
are 16 questions in this question paper. The total mark for this paper is 100.
• The marks for each question are shown in brackets
– use this as a guide as to how much time to spend on each question.
Advice
•• Read each question carefully before you start to answer it.
Try to answer every question.
• Check your answers if you have time at the end. Turn over



*P69601A0148*
P69601A
©2022 Pearson Education Ltd.

Q:1/1/1/1/

, S
IC
AT
EM
TH



1. The point P (−2, −5) lies on the curve with equation y = f (x), x∈
MA




Find the point to which P is mapped, when the curve with equation y = f (x)
is transformed to the curve with equation
(a) y = f (x) + 2
(1)
(b) y = | f (x) |
(1)
(c) y = 3f (x − 2) + 2
(2)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________

2
*P69601A0248* 

, S
IC
AT
EM
TH
MA



Question 1 continued
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________

(Total for Question 1 is 4 marks)



*P69601A0348*
3
 Turn over

, S
IC
AT
EM
TH



f (x) = (x − 4)(x2 − 3x + k) − 42 where k is a constant
MA




2.
Given that (x + 2) is a factor of f (x) , find the value of k.
(3)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________


4
*P69601A0448* 

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
codersimon West Virgina University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
757
Lid sinds
3 jaar
Aantal volgers
477
Documenten
6114
Laatst verkocht
3 dagen geleden
**SOUNDEST LEANING MATERIALS FROM CODERSIMON **

Learning is not attained by chance; it must be sought for with ardor and diligence On this page, you find exams,tests,summaries, notes ,documents, package deals, and flashcards offered by codersimon

3.8

83 beoordelingen

5
41
4
12
3
15
2
4
1
11

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen