FYSICA
DEEL 1: ELEKTRICITEIT EN MAGNETISME
HOOFDSTUK 1: LADING EN ELEKTRISCHE POTENTIAAL
Lading en materie
• Atomen ➔ kern: protonen p (Z) + neutronen n (N) omgeven door elektronenwolk (e- in orbitalen)
• # e- = # p ➔ elektrisch geladen
• De grootte van de elementaire lading = lading van een proton of elektron
• Lading is gekwantiseerd. Alle voorkomende ladingen zijn veelvouden van deze elementaire lading
• Krachten werkzaam
o Centripetale kracht op de elektronen: elektrische aantrekkingskracht tss ladingen van tegengesteld
teken: protonen en orbitale elektronen
o De kern wordt samengehouden door de sterke wisselwerking tss de nucleonen onderling:
kernkrachten
• Door fysische processen (wrijving, straling) knn de elektronen verst van de kern uit het atoom worden
weggetrokken
➔positief geladen ionen (kationen, elektronentekort) en negatief geladen ionen (anionen,
elektronenoverschot) ➔ materie wordt positief of negatief geladen
• Ionen en elektrische krachten zijn van zeer groot belang in vele biologische processen
BV signaaltransport in het zenuwstelsel gebeurt door transport van ladingen en elektrische krachten
De wet van Coulomb
• Tegengestelde ladingen trekken elkaar aan met een kracht:
• Gelijknamige ladingen stoten elkaar af met een kracht:
• De aantrekkende en afstotende krachten werken langs de lijn die beide ladingen verbindt
• Wet van Coulomb:
o De grootte van de kracht:
(epsilon 0: formularium)
• De kracht inwerkend op een lading q1 veroorzaakt door meerdere ladingen q2, q3 … is de
vectorsom van de krachten tussen q1 en q2, tussen q1 en q3 …
• Natuurverschijnsel: een bliksem ontstaat door de enorme stroom elektronen die uit de
aarde naar een positief geladen wolk worden aangetrokken
De elektrische veldvector en krachtlijnen
• De elektrische veldvector
o Nabij de aarde heerst in ieder punt vd ruimte een gravitatieveld
= gravitatiekracht op de eenheidsmassa
▪ Analoog in de ruimte nabij een elektrisch geladen voorwerp:
1
, ▪ Elektrisch veld: kracht die de eenheidslading onderbindt in het beschouwd punt
o De krachtwerking tss 2 geladen deeltjes:
GEEN rechtstreekse ogenblikkelijke werking: verloopt in 2 stappen:
▪ 1. Een lading q1 verwekt in de omgevende ruimte een elektrische veld
▪ 2. Dit veld invloed op een lading q2: q2 ondervindt de kracht F oiv aanwezige veld
o Omgekeerd veroorzaakt het elektrische veld afkomstig van lading 2 een kracht op lading 1:
symmetrische toestand
o Definitie van het elektrisch veldvector E
▪ E is de kracht die de positieve puntvormige eenheidslading (q0)
in het beschouwde punt van de ruimte ondervindt:
▪ E is een vectoriële grootheid uitgedrukt in N/C (Newton/Coulomb)
• De krachtlijnenvoorstelling van het elektrische veld
o in het geval van stationaire ladingen: het elektrisch veld verloop in de ruimte voorgesteld mbv
krachtlijnen (Faraday)
o krachtlijnen = elektrische veldlijnen = reeks lijnen die de richting van het elektrische veld
weergeven in verschillende punten in de ruimte
o de voorstelling van E berust op de volgende afspraken:
▪ de richting vd krachtlijn geeft de richting vd kracht op een positieve testlading
▪ het # krachtlijnen per eenheid van oppervlakte is evenredig met de grootte vh elektrische
veld
o de lijnen dichter bij elkaar ➔ het elektrische veld sterker
o krachtlijnen bij verschillende ladingsverdelingen:
o 1. Krachtlijnen nabij een positieve en een negatieve puntlading
▪ De kwadraatwet: de grootte vh veld neemt af met het
kwadraat vd afstand
▪ De lijnen liggen dichterbij elkaar naarmate de afstand tot
de lading kleiner is, dus hoe sterker het elektrisch veld is
o 2. Krachtlijnen nabij 2 gelijke ladingen en nabij 2 tegengestelde ladingen (elektrische dipool)
▪ Elektrische dipool: gelijke grootte maar tegengestelde lading
o 3. Krachtlijnen bij een bolvormige negatief of positief geladen geleider
▪ De lading bevindt zich aan de buitenzijde vd geleider
2
, ▪ Binnenin de sfeer heerst er geen elektrisch veld E = 0 (kooi van Faraday)
▪ Buiten de sfeer is de elektrische veldsterkte dezelfde alsof alle lading in het middelpunt
geconcentreerd is
o 4. Krachtlijnen nabij een vlakke, oneindig uitgestrekte, uniforme positieve ladingsverdeling
▪ De veldlijnen staan loodrecht op de plaat
▪ Stel = oppervlakteladingsdichtheid: hvlheid lading per oppervlakte
eenheid
▪ De grootte van E is:
• Onafhankelijk van afstand tot de plaat
• Constant in alle punten langs weerszijden vh oppervlak
▪ Formule ook bruikbaar bij eindige vlakke ladingsverdelingen voor punten op loodrechte
afstanden r die klein zijn vergeleken met de afstand vd beschouwde punten tot de randen
vd eindige ladingsverdeling
o 5. Krachtlijnen bij een bipolaire laag die uniform geladen is
BV condensor
▪ Het veldlijnenpatroon in de omgeving ve # macromoleculen
(proteïnen of nucleïnezuren) laat toe op afstand hun interacties
te selecteren
De elektrische dipool
• Het elektrisch veld op een afstand r langs de middelloodlijn op de verbindingsrechte tss beide ladingen
o Beschouw een elektrische dipool bestaande uit een
positieve lading +q en een gelijke tegengestelde lading -q
op een afstand 2a
o Beschouw punt P op de middelloodlijn vd dipool
o In het punt P wordt het resulterend elektrisch veld
gegeven door de vectorvgl:
o De grootte van E1 en E2:
o De vectorsom is verticaal opwaarts gericht
o
o ➔ het elektrische veld vd elektrische dipool daalt met toenemende afstand r volgens een 1/r3
wetmatigheid
3
, o ➔ het elektrische veld daalt dus sneller dan het elektrische veld ve afgezonderde puntlading
waarvoor E evenredig is met 1/r2
• Een dipool in een homogeen uitwendig elektrisch veld
o Beschouw een dipool bestaande uit 2 gelijke ladingen met tegengesteld teken op een afstand 2a
van elkaar en verbonden met elkaar
o
o ➔ de dipool gaat een rotatiebeweging uitvoeren
Elektrisch potentiaal
• Beschouw een sferische lading q die een elektrisch veld opwekt
o Een positieve testlading q0 ondervindt in het punt A een
kracht F = q0 E
o Om q0 van A naar B langs het pad 1 te brengen tegen het
elektrisch veld in, moet er een uitwendige
arbeid WAB geleverd worden
• Def: het elektrisch potentiaalverschil tss A en B, VB – VA:
• Het elektrisch potentiaalverschil tss 2 punten B en A is de arbeid die een uitwendige kracht moet uitoefen
om positieve eenheidslading van A naar B te brengen
• SI-eenheid van potentiaalverschil: de Volt
➔ 1 volt = 1 J/C
• Het potentiaalverschil VB – VA is onafh vd gevolgde weg:
o Beschouw een verplaatsing vd testlading q0 langs pad 2
o De uitwendige krachtvector Fuitw is op ieder ogenblik in grootte gelijk en tegengesteld aan
elektrische krachtvector q0E
o Pad 2 is te benaderen door een gebroken baan, afwisselend samengesteld uit een boogsegment en
een radiaal element
o
o Bij gebroken baan enkel arbeid verricht langs de radiale elementen
o Som van radiale elementen = radiale weglengte AB
o WAB langs gebroken baan = WAB langst pad 1
o Door het # boogsegmenten en radiale elementen willekeurig groot te kiezen, kan de gebroken
baan willekeurig dicht benaderen tot pad 2:
➔ VB – VA langs pad 1 = VB – VA langs pad 2
• De elektrische potentiaal in een punt op ∞ afstand ve puntvormige lading, ve eindige discontinue of
continue ladingsverdeling, wordt op arbitraire wijze gelijk gesteld aan 0: V∞ =0
• Def: de elektrische potentiaal in een willekeurig punt:
o met W de arbeid verricht door een uitwendige kracht om een positieve
testlading q0 bij het doorlopen van opeenvolgende evenwichtstoestanden vanuit ∞ te brengen naar
het beschouwde punt
➔ V>0 nabij een positieve lading
➔ V<0 nabij een negatieve lading
• alle punten met dezelfde elektrische potentiaal vormen een equipotentiaaloppervlak
o bij de verplaatsing ve testlading tss 2 punten op een equipotentiaaloppervlak is de arbeid = 0
o veldvectoren E staan loodrecht op de equipotentiaaloppervlakken
• uit het verloop vh elektrisch veld kan de potentiaal berekend worden
o beschouw een willekeurig punt B in een elektrisch veld
4
DEEL 1: ELEKTRICITEIT EN MAGNETISME
HOOFDSTUK 1: LADING EN ELEKTRISCHE POTENTIAAL
Lading en materie
• Atomen ➔ kern: protonen p (Z) + neutronen n (N) omgeven door elektronenwolk (e- in orbitalen)
• # e- = # p ➔ elektrisch geladen
• De grootte van de elementaire lading = lading van een proton of elektron
• Lading is gekwantiseerd. Alle voorkomende ladingen zijn veelvouden van deze elementaire lading
• Krachten werkzaam
o Centripetale kracht op de elektronen: elektrische aantrekkingskracht tss ladingen van tegengesteld
teken: protonen en orbitale elektronen
o De kern wordt samengehouden door de sterke wisselwerking tss de nucleonen onderling:
kernkrachten
• Door fysische processen (wrijving, straling) knn de elektronen verst van de kern uit het atoom worden
weggetrokken
➔positief geladen ionen (kationen, elektronentekort) en negatief geladen ionen (anionen,
elektronenoverschot) ➔ materie wordt positief of negatief geladen
• Ionen en elektrische krachten zijn van zeer groot belang in vele biologische processen
BV signaaltransport in het zenuwstelsel gebeurt door transport van ladingen en elektrische krachten
De wet van Coulomb
• Tegengestelde ladingen trekken elkaar aan met een kracht:
• Gelijknamige ladingen stoten elkaar af met een kracht:
• De aantrekkende en afstotende krachten werken langs de lijn die beide ladingen verbindt
• Wet van Coulomb:
o De grootte van de kracht:
(epsilon 0: formularium)
• De kracht inwerkend op een lading q1 veroorzaakt door meerdere ladingen q2, q3 … is de
vectorsom van de krachten tussen q1 en q2, tussen q1 en q3 …
• Natuurverschijnsel: een bliksem ontstaat door de enorme stroom elektronen die uit de
aarde naar een positief geladen wolk worden aangetrokken
De elektrische veldvector en krachtlijnen
• De elektrische veldvector
o Nabij de aarde heerst in ieder punt vd ruimte een gravitatieveld
= gravitatiekracht op de eenheidsmassa
▪ Analoog in de ruimte nabij een elektrisch geladen voorwerp:
1
, ▪ Elektrisch veld: kracht die de eenheidslading onderbindt in het beschouwd punt
o De krachtwerking tss 2 geladen deeltjes:
GEEN rechtstreekse ogenblikkelijke werking: verloopt in 2 stappen:
▪ 1. Een lading q1 verwekt in de omgevende ruimte een elektrische veld
▪ 2. Dit veld invloed op een lading q2: q2 ondervindt de kracht F oiv aanwezige veld
o Omgekeerd veroorzaakt het elektrische veld afkomstig van lading 2 een kracht op lading 1:
symmetrische toestand
o Definitie van het elektrisch veldvector E
▪ E is de kracht die de positieve puntvormige eenheidslading (q0)
in het beschouwde punt van de ruimte ondervindt:
▪ E is een vectoriële grootheid uitgedrukt in N/C (Newton/Coulomb)
• De krachtlijnenvoorstelling van het elektrische veld
o in het geval van stationaire ladingen: het elektrisch veld verloop in de ruimte voorgesteld mbv
krachtlijnen (Faraday)
o krachtlijnen = elektrische veldlijnen = reeks lijnen die de richting van het elektrische veld
weergeven in verschillende punten in de ruimte
o de voorstelling van E berust op de volgende afspraken:
▪ de richting vd krachtlijn geeft de richting vd kracht op een positieve testlading
▪ het # krachtlijnen per eenheid van oppervlakte is evenredig met de grootte vh elektrische
veld
o de lijnen dichter bij elkaar ➔ het elektrische veld sterker
o krachtlijnen bij verschillende ladingsverdelingen:
o 1. Krachtlijnen nabij een positieve en een negatieve puntlading
▪ De kwadraatwet: de grootte vh veld neemt af met het
kwadraat vd afstand
▪ De lijnen liggen dichterbij elkaar naarmate de afstand tot
de lading kleiner is, dus hoe sterker het elektrisch veld is
o 2. Krachtlijnen nabij 2 gelijke ladingen en nabij 2 tegengestelde ladingen (elektrische dipool)
▪ Elektrische dipool: gelijke grootte maar tegengestelde lading
o 3. Krachtlijnen bij een bolvormige negatief of positief geladen geleider
▪ De lading bevindt zich aan de buitenzijde vd geleider
2
, ▪ Binnenin de sfeer heerst er geen elektrisch veld E = 0 (kooi van Faraday)
▪ Buiten de sfeer is de elektrische veldsterkte dezelfde alsof alle lading in het middelpunt
geconcentreerd is
o 4. Krachtlijnen nabij een vlakke, oneindig uitgestrekte, uniforme positieve ladingsverdeling
▪ De veldlijnen staan loodrecht op de plaat
▪ Stel = oppervlakteladingsdichtheid: hvlheid lading per oppervlakte
eenheid
▪ De grootte van E is:
• Onafhankelijk van afstand tot de plaat
• Constant in alle punten langs weerszijden vh oppervlak
▪ Formule ook bruikbaar bij eindige vlakke ladingsverdelingen voor punten op loodrechte
afstanden r die klein zijn vergeleken met de afstand vd beschouwde punten tot de randen
vd eindige ladingsverdeling
o 5. Krachtlijnen bij een bipolaire laag die uniform geladen is
BV condensor
▪ Het veldlijnenpatroon in de omgeving ve # macromoleculen
(proteïnen of nucleïnezuren) laat toe op afstand hun interacties
te selecteren
De elektrische dipool
• Het elektrisch veld op een afstand r langs de middelloodlijn op de verbindingsrechte tss beide ladingen
o Beschouw een elektrische dipool bestaande uit een
positieve lading +q en een gelijke tegengestelde lading -q
op een afstand 2a
o Beschouw punt P op de middelloodlijn vd dipool
o In het punt P wordt het resulterend elektrisch veld
gegeven door de vectorvgl:
o De grootte van E1 en E2:
o De vectorsom is verticaal opwaarts gericht
o
o ➔ het elektrische veld vd elektrische dipool daalt met toenemende afstand r volgens een 1/r3
wetmatigheid
3
, o ➔ het elektrische veld daalt dus sneller dan het elektrische veld ve afgezonderde puntlading
waarvoor E evenredig is met 1/r2
• Een dipool in een homogeen uitwendig elektrisch veld
o Beschouw een dipool bestaande uit 2 gelijke ladingen met tegengesteld teken op een afstand 2a
van elkaar en verbonden met elkaar
o
o ➔ de dipool gaat een rotatiebeweging uitvoeren
Elektrisch potentiaal
• Beschouw een sferische lading q die een elektrisch veld opwekt
o Een positieve testlading q0 ondervindt in het punt A een
kracht F = q0 E
o Om q0 van A naar B langs het pad 1 te brengen tegen het
elektrisch veld in, moet er een uitwendige
arbeid WAB geleverd worden
• Def: het elektrisch potentiaalverschil tss A en B, VB – VA:
• Het elektrisch potentiaalverschil tss 2 punten B en A is de arbeid die een uitwendige kracht moet uitoefen
om positieve eenheidslading van A naar B te brengen
• SI-eenheid van potentiaalverschil: de Volt
➔ 1 volt = 1 J/C
• Het potentiaalverschil VB – VA is onafh vd gevolgde weg:
o Beschouw een verplaatsing vd testlading q0 langs pad 2
o De uitwendige krachtvector Fuitw is op ieder ogenblik in grootte gelijk en tegengesteld aan
elektrische krachtvector q0E
o Pad 2 is te benaderen door een gebroken baan, afwisselend samengesteld uit een boogsegment en
een radiaal element
o
o Bij gebroken baan enkel arbeid verricht langs de radiale elementen
o Som van radiale elementen = radiale weglengte AB
o WAB langs gebroken baan = WAB langst pad 1
o Door het # boogsegmenten en radiale elementen willekeurig groot te kiezen, kan de gebroken
baan willekeurig dicht benaderen tot pad 2:
➔ VB – VA langs pad 1 = VB – VA langs pad 2
• De elektrische potentiaal in een punt op ∞ afstand ve puntvormige lading, ve eindige discontinue of
continue ladingsverdeling, wordt op arbitraire wijze gelijk gesteld aan 0: V∞ =0
• Def: de elektrische potentiaal in een willekeurig punt:
o met W de arbeid verricht door een uitwendige kracht om een positieve
testlading q0 bij het doorlopen van opeenvolgende evenwichtstoestanden vanuit ∞ te brengen naar
het beschouwde punt
➔ V>0 nabij een positieve lading
➔ V<0 nabij een negatieve lading
• alle punten met dezelfde elektrische potentiaal vormen een equipotentiaaloppervlak
o bij de verplaatsing ve testlading tss 2 punten op een equipotentiaaloppervlak is de arbeid = 0
o veldvectoren E staan loodrecht op de equipotentiaaloppervlakken
• uit het verloop vh elektrisch veld kan de potentiaal berekend worden
o beschouw een willekeurig punt B in een elektrisch veld
4