100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary BBS1005 Embryology Cases 1-8

Rating
-
Sold
-
Pages
54
Uploaded on
03-09-2022
Written in
2021/2022

BBS1005 Embryology Cases 1-8

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
September 3, 2022
Number of pages
54
Written in
2021/2022
Type
Summary

Subjects

Content preview

BBS1005
Course summary




Qu, Ivan (Stud. FHML)

,CASE 1

LEARNING GOALS

1. DNA STRUCTURE
2. MUTATIONS: TYPES, CAUSES, AND CONSEQUENCES
3. DNA REPAIR MECHANISMS (FOR MUTATIONS)
4. EPIGENETIC MODIFICATIONS (DNA METHYLATION AND HISTONE MODIFICATION) AND CAUSES
5. GAMETOGENESIS: MALE AND FEMALE AND INFLUENCE OF AGE

RESEARCH

LEARNING GOAL 1: DNA STRUCTURE

DNA is a molecule that consists of two polynucleotide strands that are connected in a double helix
structure by H bonds.

Nucleotides are made of 1 deoxyribose, 1 phosphate-group and 1 of either A, T, C or G
(adenine, thymine, cytosine, and guanine). A is specifically tied to T and C is only compatible
with G (respectively 2 H bonds and 3 H bonds).

On a larger scale, the double helix will then wrap around histones, forming a nucleosome. Histones
are proteins and play a key-role in determining the structure of the chromosome. Furthermore, it
prevents DNA from becoming tangled and protects it from DNA damage. It also plays an important
role in gene regulation and DNA replication. Those nucleosomes are connected and are packed
together into a chromatin-strand, which then also will be packed together into a chromosome.

There is also a difference between euchromatin and heterochromatin. The former being an
“open” state which makes gene expression possible, while the latter is so condensed that the
expression is no longer possible.

LEARNING GOAL 2: MUTATIONS

Mutation is the process by which the sequence of base pairs in a DNA molecule is altered.

Chromosomal mutations are changes involving whole chromosomes or sections of them. Point
mutations involve a change one or few base pairs. Mutations can occur in either a somatic cell,
somatic mutation, and in germ cells, germ-line mutation. The former affects only the individual and is not passed
onto the next generation, whereas the latter is. Germ-line mutations can lead to an individual, who has both the
mutation in its somatic and germ cells.

POINT MUTATIONS

A missense mutation is a mutation in which a base-pair change causes a change in an mRNA codon, so that a
different amino acid is inserted into the polypeptide.

,A nonsense mutation is a mutation in which the base-pair change alters an
mRNA codon for an amino acid to a stop codon.

A neutral mutation is a base-pair change in a gene that changes a codon in the
mRNA such that the resulting amino acid substitution produces no change in
the function of the translated protein.

A silent/synonymous mutation is a mutation that changes a base pair in a gene,
but the altered codon in the mRNA codes for the same amino acid in the protein.
Silent mutations most likely occur in the third base, the wobble base.

In case of a deletion of insertion mutation, the reading frame of an mRNA can
change: a frameshift mutation.

CHROMOSOMAL MUTATIONS

Insertion

Inversion: para- or pericentric

Translocation: portion of one chromosome has been transferred to
another chromosome

➔ Reciprocal translocation: segments from 2 different chromosomes (non-
homologous) have been exchanged
➔ Nonreciprocal translocation: translocation within the same chromosome (non-
reciprocal intrachromosomal) or one way transfer from one chromosome to
another (nonreciprocal interchromosomal)

Deletion: segment of DNA is cut out

➔ Terminal deletion
➔ Intercalary/interstitial deletion: from the interior of a chromosome
➔ Microdeletion: small amount of deletion

Duplication

Chromosomal abnormalities can be organized into numeral and structural abnormalities. Examples of the former
are monosomy or trisomy, the latter is caused by deletions, duplication, translocation etc.

Aneuploidy: presence of an abnormal number of chromosomes in a cell (nulli, mono, tri, tetra, poly etc. -somy)

CAUSES OF MUTATIONS

- Error in mitosis
- Error in meiosis
- Environmental factors (ionizing radiation, exposure to mutagens, infections by viruses etc.)
- Age
- Instability of purines

LEARNING GOAL 3: DNA REPAIR

SINGLE NUCLEOTIDE LEVEL

3’ TO 5’ PROOFREADING: DURING REPLICATION

, Insertion of the wrong base causes a mismatch, in which no H-bonds are formed. This means that DNA
polymerase can’t elongate the new strand anymore and replication is halted. 3’ to 5’ exonuclease activity
attached to DNA polymerase chews back and removes the wrong nucleotide, allowing for DNA polymerase to
continue elongating the strand.

STRAND DIRECTED MISMATCH REPAIR: AFTER REPLICATION

Correct DNA repair is only possible in case of double stranded
DNA

MutS, MutH

Direct repair: a damaged nucleotide is fixed. The damage can be
on the base, phosphate group or the deoxyribose. Only the
damaged part is fixed.

Base excision repair: damaged or incorrect base structure leads to
complete removal of nucleotide, which will then be replaced by a
correct one. The base is removed by a DNA glycosylase, and the
sugar phosphate is removed by AP endonuclease and
phosphodiesterase. DNA polymerase adds correct nucleotide and DNA ligase seals the nick.

Nucleotide excision repair: excision of a larger portion of nucleotides.
Excision nuclease cuts the phosphodiester bonds on either side of
the damaged portion and DNA helicase removes the H-bonds. The
gap is restored by DNA polymerase and DNA ligase.

Transcription coupled repair: some mutations are discovered and
repaired during transcription

DNA STRAND BREAKS

REPAIR OF DOUBLE STRAND BREAKS

Nonhomologous end joining: degradation at the ends so there is loss
of nucleotides. The leftover DNA is then connected, with a deletion of
DNA sequence.

→Nonhomologous repair on replication fork: leads to wrong repair at
which 2 strands are connected to one another, albeit of a different
initial DNA segment: could lead to connection of 2 chromosomes.

Homologous recombination: degradation at the ends so there is initial
loss of nucleotides. Then information forms a sister chromatid is used
to repair the damage and restore the loss of nucleotides.

→ Repair using homologous recombination on replication fork: due to
a DNA nick, the replication fork will break. There are now 2 double
stranded DNAs. Using homologous recombination, these can be
connected again, forming a replication fork.

LEARNING GOAL 4: EPIGENETICS

HISTONE MODIFICATION
$11.98
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
ivan3

Get to know the seller

Seller avatar
ivan3 Maastricht University
Follow You need to be logged in order to follow users or courses
Sold
1
Member since
3 year
Number of followers
1
Documents
6
Last sold
3 year ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions