100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Other

Mathematik für Physiker 3 (Analysis 2) - Formelzettel/CheatSheet

Rating
-
Sold
-
Pages
3
Uploaded on
12-04-2021
Written in
2020/2021

Umfangreiches, doppelseitiges, handgeschriebenes und vollständiges Formelblatt (Cheat Sheet) für die Prüfung in Mathematik für Physiker 3 (Analysis 2). Die behandelten Themen umfassen den gesamten Stoff des dazu passenden Skriptes/Mitschrift hier auf Stuvia. Auf der 2. Seite (Rückseite) befinden sich zusätzlich nützliche mathematische Methoden, Integrale und Reihen. Außerdem ist dort auch etwas freier Platz für eigene Anmerkungen und Notizen.

Show more Read less
Institution
Course








Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Uploaded on
April 12, 2021
File latest updated on
January 22, 2022
Number of pages
3
Written in
2020/2021
Type
Other
Person
Unknown

Subjects

Content preview

METRISCHE RÄUME
NPR MIERTE VEKTORRÄUME d-




„(
DIFFERENZIERBARFETT )




x.mg#.-. na. nas.ni*a. in0Ä÷:ijwfyÄy⇐ „
stetig >




zg.n.g.ggepig.nennayqagw.gqga.gg
=

-
( M d) ,
-
f: ✗ →
Y . . .




fünf f) f- ( KiTa ) [ 0,0 )



÷÷÷÷:
'
Metrik MXM Ein )
Stetig Norm II II


÷:÷÷÷÷÷:÷÷÷÷:÷÷÷÷;;:
d : →
. . .
, wenn
= : ✓ →



dcx , y ) 0 < ✗ y GI Stetig wenn FE > 070>0 Ya c- ✗ :
11×11=0 < × 0
Io f%+N;¥Y"
= = "

.
= - . -
,

f total differenzierbar JA linear 0 mit A- FA)
.

:
wenn =
-




, „
"" " "" " "" " "
" " "" " " " " ×

„„ „ „„ „„ „
„ „„„ „
„ yay , , ← „ ✗ „ „
.
.




DU % Ü <✗ }
RICHTUNGS ABLEITUNG dvfcx ) ⇐ ¥ FCX + tv ) / f- o ( Tff ) v3
)
JA
=


MIKE > 0 On Bean 0} M I I ( ✗ neu )
③(✗ y)
= → × ,

Bahn U # ( MW ) # c-
y linear
c- : : xn
}
: =



,
: =
:
✗ →
und beschränkt
↳ f
)
gygogpifaywy.nu (
UU du bei differenzierbar < dvfcx ) fix ) AA )
int U Ix } × > ✓
=

I U
: = =

U Umgebung von *
= =

c-




DEMO
„ „ „ „ „ „„ „ „„ „ „„
fK-ixitpji-xn-faforHA.tl

„ „ „„ „ „ ¥70
.




BEK) =

[ YEM I day ) < E } NORM „ PARTIELLE ABLEITUNG (× )
a u a " (a) „„
angspunueu.nu →
÷ ←


=D = > A unbeschränkt
„„ „ ABM (n)
<
„„ „ „„ „ „„ „ „ „ „„ „„ „ „ „„
.



„ „ „ „ „ „




fYA)abgesü% !
" "
„ „ „
bei f :# →
☐ stetig on Karo)


| (0^-440) ""
- - -
.




Jacobi Matrix If Go)
" " "" " " " " " "" ÷ "
-




" "" "
"
:=
" " " " "" " " -
"
" "" " "

„ „„ „ „ „„

Und ABGESCHLOSSEN ⇐ Kopieren , Asean ,



„„„„=qg.¥,qgy
-




FETTEN REGEL
U BESCHRÄNKT ] CERIV-x.yc-U.dk/,y)c-CMZUSaMenh. , A
Jgof (✗ ) Ig ( FAO) ) ] (x )
.




for Ui offen ✗ →
Y linear =
f-




)
: :
o
wenn
[mit
¢
£
< A Lipschitz stetig
Chun Uns Uz ( y (t ) ) D. ✓ ( H) ) j (t )
-




¢!! )
M # •

,
=
oder ✓ =
y
/ I. II )
"
In ( K für UEK
" < A stetig bei × of
gilt
-

_




:



, "" " ←
wegzugn .

, wenn × .
, ← × , µ < „ „ „ „ an ,

abgeschlossen ← µ,
"" ,

kompakt < Igel ( [ 0,1]) yco) a) in X ° "
=
:
ny =p
und beschränkt Normen sind äquivalent ,

, < Infernal , in µ
„ nom , an , * „ „ „ g. „ „ papa grauen , „„☐ na , zu
„„ „„ „ „„ „„ „ „ „ „„
g. . . . .




fi
Gebiet offene f Monoton
!
" " Menge +
Banach raum streng [✗ } und
f beschränkt
'
Ne
"

f :[a Nivea Linien Rl / f) (
stetig y] c-
=
• = > :-.
>
f injektiv
,
=

ist vollst nom Vektorraum
KOMPAKTHEIT S ARGUMENT Ist U zsh .
und . -




ihrer Tangente TG ) :
-

-




yoi-ytx.la/-xo)=yo+Y-o(x- xD
f- ( ✗ ) ist kompakt lstf ✗ : →
Ysietig " '


Punkt ( xoxo )
kompakt

n

„ „ „„ „
f auf X
gleich Stetig d.h. JCERI ttet



1- stetig fcyct) ) (

!!;]!!!!!!!
.
:
± es
=
mit =

meinte
"
" "
Supremums
:



¥

> MAX / MIN auf f in ZWS ! 3- fcz )
Folge konvergiert ))
Yt DHfK [ (t ) >
>
= =
Cauchy > I < 0
d- " "A- supthn-y.li } fgurjek.fi ✓
= =
.
-
.




c- :
.




= >




DEMO
,
. .




-



.




TAYLOR APPROXIMATION

:*:*:*
<
alle diffbar
* fidiffbar und alle Oif
Steig stetig partiell
• = > .




⇐„÷;__(
.
/ RPG a) |
=
= > ( im /

< •
¥:b Ip (
z.it#xp+(1-z&:f(y)-fCx)--TfCz ) (
"
a) FA ) UM
analytisch JIE [ 0,1 ] )
=

=
reel wenn × , ✗ c-
×
y

, : -




" "
f
" :
Taylor polynom von : ☒ →
Rt AERI E zwischen und y
Verbindungsstrecke
um



TGI-tca-dnfcalx-ai-I.cn?f(a)(x-aYt--.-L-:OnkfCa)Cx-at
SATZ-vonSCHWARZ-i.didjfcx7-djdifGMits.vn
I nations vektor it ( z.B .
K -2 -
:
Oxxf , dxyf , dyxf Oyyf ) ,




( UN ) fcacuiv ) bcu.ir ) ) HESSE MATRIX Stetigkeit durch z.B AfA ) Hall ⇐ 11×-011 C L stetig !
-




gegeben
- .




wenn
g
= -

, .




,




„„„„„„„„„„„÷;y¥;g;§¥„
Hesse Matrix
gesucht f Taylor




„„g„„„„„„„„„„„„„,„„„)
und →
neues in „ „„ „ „„ „ „ a

einsetzen und Ön ablesen ! f- (A) =


A
"

f (A) (B)
'
= -




A
"


B A-
^




( × a
-




Hf ( f (A) MA f (A) (B) MB
→ '


g)
= =




a,

f (A) = ich (A) =
A →
f- (A) (B)
' =
B




DEMO
f- (A) AMA FCA ) (B) BMA + AM B
EXTREMA
= =



quadratische Form Qcv ) Qv > vtttv




„„„,„„„„„„„„„„„„„.„„_÷ „„„„„„µ„„„„.„„„„„.„„„„÷
=
< v, =




"× ) "✗ )
"

HZO
"
f- (A) =
ATA →
FCA ) ( B ) =

BTA + ATB
"> # " " " " "} >




}
Qcv )
" " :
°
Kv # 0
H> 0 0 ⇐ °
>
positiv detin ,it
< = >


positiv senide # nit
EW Ai vo n H :
zi > ☐ isoliertes MIN bei ✗ o


f-(A)
>
<
oh (A) FCA ) (B) [ h ' (A) ( B)]
=




( NA)
→ '

g
=

g
= -




<= > det ( A# ) =
O YA #


}
"
"
JE Beko ) KXOJ :-( A) fcxo )
definit H< 0
"

H
> 0 ✗ c- <

negativ
"

< = > Qcv ) < 0 ✓ =/ 0 = >
← 0
< = > EW Ai vo n H : 1- < 0
= >
isoliertes MAX bei ✗ o
negativ semi definit


indefinit
"
H 0
"


negativ } SATTELPUNKT INTEGRALRECHNUNG
D
=
nicht
<
positiv oder




Ö





" dt


IFA )
'



mit Xo stationär / kritisch bei TFAD-T-d.tn 3- Umgebung Vvonxo ,
in der f Extremum annimmt L FA ) : =
, × ) dt =

a
, „ dt
Mit Flt ,
x ) vektorwertig .




( ⇐ Rl
"
KONVEX ,
wenn V-xiyc-CV-t.COM ) :
c- × + ( 1- f) y c- (
for f
stetig auf U offen = >
¥f(×)=%¥F(t,×)dtf
f :( → ☒ KONVEX wenn × y c- ( Kf c- ( 0,1 ) f- ( Ex + (1 - f) y) E- tf ( x ) + ( 1- E) fly ) SATZ FUBINI ( F :[ c. d] [ ab ]
stetig )
: :
, , von ✗ →

n




diwff-N-Y-t-y-TXH.ca
( strikt )

f :
y = # konvex . . .
HfG) 70 < f konvex auf U ,
d. h . lokales MIN globales MIN
[ ( IFA ,
t ) dt ) dx =

[([ Fcxitldx ) dt
) > o < f strikt konvex d. h höchstens ein MIN
parameter
abhängige Integrale
,
.




:


KH) hcx)




KURVEN INTEGRALE und VEKTOR FELDER
KALKÜL




⇐„„ „ „ „ „y÷÷÷÷÷;„ ①„⇐=÷a⇐
NABLA
/1
U23)
gerade Permutationen
-




?_?
von




DEMO
k
) (diffbar )
"
( Kurve c- C ( [to.tn] RI
" •
stückweise wenn

=
Yi
y
-




g.IS?.EijkajDi-- |
Ms)
,

ungerade Permutationen
,

Eijk I
=
Levi Ceuta Tensor
von
-




(a ✗ b) c- mit
-
-




""
=




ßm⇐÷j
""" " " " ""
/ ¥ 11J (f) It




gleich)
"" " =
° sonst G- B
" mind zwei Indizes
((y )
- -




Länge dt
-




: =

FEE [ taten]
regulär j (t) # 0 a.ca b. ( b) o

wenn
, →
> b) = * =




Gradienten feld : f- =D = >
DX F =
0 Rotations frei !
C- Vektor feld FEÜTR "
R
"
) Rotations Geld F- DX E !
↳ auf .
. . um
parametrisieren : ,
→ axcyx c) =
b ( a c) -
( ( ab)
:
☐ •
F =
0
Divergenz frei
"" " "" it Gradienten Feld FA ) =p (× ,
}
① sct) bilden
"
" :



② nach tcs ) uniformen Einheit
sgeschw mit Eich Freiheit :
( nicht
eindeutige Potentiale)



„„=
.




wenn man ein Potential ①( x) =P
③ in
✗ A) einsetzen :
äwcniauene

0c-czu.ie)
findet
grad
( Oic)
Kurve mit
① = c Konstante

ft-X://t.j-at-fr-cnaFEII.sn?i-g.:PxE--Px
☐ . . -




„„

Kurven integral
( Ex Pe ) V9 .
.


Eichung ritt :
U - > ☒
,

) F- ( r ) [t (Vektor potential)
" "
FELCR R konservativ d.h. § Fcr) dr
-



O Fct , ) drxr
z.B
-



/ , : = r
.




Oitj =
Dj Fi

+1£
edjm_ mD
=

U the Utt [ 0,1 ]
Eijk Eren
0A ) ¥ sternförmig Ja
:
Mit
U c-
:
: =
Fcr ) a r wenn c-
,

<= > F ist
unabhängig d. h { Flrldr =

Sjfcrldr

tianya.sar-oga.ro/gc.J-I!Fa=a!!EImr
weg ,


mit

an =
g- an und zu> =
JG ) mit n : +

☒ stetig
t-a+4-t)-XE- = > Jede konvexe Menge ist
:
sierniörnig
⇐>

IMPLIZITE FUNKTIONEN => it
Ableitung
:
"

SCHRANKEN SATZ ( 4. Y ) LOKALE UMKEHRBARKEIT n




JIM-n-tdyfGID~JxfCXIYT-d.h.de#fx)--O,fregvl--ar-
'
FEC
Funktion f ☒ ✗ ßn ☒ regulär
Imp




t-T.si:0#.;-. . .i.F---s-:::.¥÷¥F
mnmT
,; # : →




HfG) -
ff) II C- Hf / /
'
Hy -

× ] FAO ) Vektorraum -




Isomorphismus . mit Nullstellen
Menge N : =
f( * yo ) / ,
f- ④ = 0 }
[ * ,]




→""
oder einfacher

II
wenn dyfcxoiyo) invertierbar ,
Many ] EIL Hf
'

Hf
'
Mit : =
G)

d.h.detCJycxoiyoD-V-ao.y.to
✓ ""
>
Joffe" "
9lb ""
9
✗°
=


und Fxcxo -107=0
Banachräumen ,

Abbildungen zw .




! Mit FA) offen und flv Difleonorphisrlus ggü

auf konvexen sind L stetig
kompakten & ?
-




Mengen Existiert 10k¥ Auflösung nach "
(÷ ! ) §) §!
,




7 7<1
= >
z.B fcyw × z ) =
=
( %,#
es

4:14 M ist Kontraktion wenn
:
d. h f /✓ und f-
^
u differenzierbar ,
y
bijektiv
.

, ,



Ü (× )
→ eine ,
:
✓→

FEXIY) 0¥
.




V1 SO dass 0 =
tx y EM d ( ✗ ( x ) Ky ) ) < Idk Y)
→ d. h =
Y nach × z auflösen
dima )
/
:
y
dim (a)
, , ,
,
=




FIXPUNKTSATZ
Lösungswege yi geben
"

dann kann mehrere
Fixpunkt 3=419)
es „

4 besitzt eindeutigen
✗ ( ✗ n) →
{ Satz über
implizite Funktionen !
jede Folge
: =
sodass xn.in
?⃝
?⃝

?⃝ ?⃝ ?⃝
$5.43
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
AdelinaB Technische Universität München
Follow You need to be logged in order to follow users or courses
Sold
59
Member since
5 year
Number of followers
29
Documents
35
Last sold
4 months ago

4.3

8 reviews

5
4
4
2
3
2
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions