100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4.2 TrustPilot
logo-home
Interview

Definition of a vector space and its properties, including associativity, commutativity, distributivity, and scalar multiplication.

Bewertung
-
Verkauft
-
seiten
1
Hochgeladen auf
09-02-2023
geschrieben in
2021/2022

overview of the concept of vector spaces in linear algebra. The essay starts by defining a vector space and its properties, including associativity, commutativity, distributivity, and scalar multiplication. It then goes on to discuss the related concepts of span, dimension, and independence, which are all important in understanding the representation of linear combinations of vectors. The essay also covers the concept of basis vectors, which are a set of vectors that span a vector space and are linearly independent. The dimension of a vector space is equal to the number of basis vectors required to span it, and basis vectors provide a way to represent vectors in a unique and consistent way and to transform between different representations of a vector space. The essay ends with a discussion of orthogonal and orthonormal basis vectors, which provide a way to represent vector spaces in a simple and convenient form, and play a role in many applications, including the solution of systems of linear equations and the analysis of orthogonality in vector spaces.

Mehr anzeigen Weniger lesen








Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Schule, Studium & Fach

Hochschule
Mittelschule
Studium
Gymnasium
Schuljahr
1

Dokument Information

Hochgeladen auf
9. februar 2023
Anzahl der Seiten
1
geschrieben in
2021/2022
Typ
Interview
Unternehmen
Unbekannt
Person
Unbekannt

Themen

Inhaltsvorschau

Master the Art of Linear Algebra

Definition of a vector space and its properties, including associativity, commutativity, distributivity, and
scalar multiplication.

Basis vectors are another important concept in vector spaces. A basis for a vector space is a
set of vectors that span the vector space and are linearly independent. In other words, a basis
for a vector space provides a minimal set of vectors that can be used to represent all of the
vectors in the vector space in a unique and consistent way.
The dimension of a vector space is equal to the number of basis vectors required to span the
vector space. For example, a two-dimensional vector space requires two basis vectors, while a
three-dimensional vector space requires three basis vectors.
One of the important properties of basis vectors is that they provide a way to represent vectors
in a vector space in a unique and consistent way. In other words, any vector in a vector space
can be represented as a linear combination of basis vectors. This is useful in many applications,
as it allows us to represent vectors in a compact and convenient form.
Another important property of basis vectors is that they provide a way to transform between
different representations of a vector space. In other words, if we have two different sets of basis
vectors for a vector space, we can use these basis vectors to transform between the two
representations in a consistent and coherent way.
Finally, the concept of orthogonal and orthonormal basis vectors is also important in vector
spaces. An orthogonal basis is a basis in which the basis vectors are orthogonal to each other,
while an orthonormal basis is a basis in which the basis vectors are orthogonal to each other
and have length 1. Orthogonal and orthonormal basis vectors provide a way to represent vector
spaces in a simple and convenient form, and they play a role in many applications, including the
solution of systems of linear equations and the analysis of orthogonality in vector spaces.
In conclusion, basis vectors are an important concept in vector spaces, with a variety of
properties and applications. The ability to represent vectors in a unique and consistent way, to
transform between different representations of a vector space, and to analyze orthogonality are
all important aspects of basis vectors that make them a central and fundamental concept in
linear algebra and its applications.
5,79 €
Vollständigen Zugriff auf das Dokument erhalten:

100% Zufriedenheitsgarantie
Sofort verfügbar nach Zahlung
Sowohl online als auch als PDF
Du bist an nichts gebunden

Lerne den Verkäufer kennen
Seller avatar
hanzalaalamkhan

Lerne den Verkäufer kennen

Seller avatar
hanzalaalamkhan Technische Universität Berlin
Profil betrachten
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
0
Mitglied seit
2 Jahren
Anzahl der Follower
0
Dokumente
1
Zuletzt verkauft
-

0,0

0 rezensionen

5
0
4
0
3
0
2
0
1
0

Kürzlich von dir angesehen.

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen