100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Readings Summary for Data Engineering for MADS (Mandatory & Optional Papers + Book Chapters)

Beoordeling
-
Verkocht
-
Pagina's
148
Geüpload op
05-02-2023
Geschreven in
2022/2023

The best summary of ALL READINGS for Data Engineering for MADS (EBM213A05). Includes both mandatory and optional papers and book chapters. Enhanced with a dynamic table of contents and meticulous organization for readability and easy studying. 100% of profit from this summary is donated to local Groningen NGOs, as well as national ones.

Meer zien Lees minder

















Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Chapter 1, chapter 2.1-2.5, chapter 3.4, 3.9, chapter 4 and chapter 5
Geüpload op
5 februari 2023
Aantal pagina's
148
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

SUMMARY OF ALL READINGS
INCLUDING OPTIONAL AND MANDATORY READINGS .
N o t e : S o m e r e a d i n g s o m i t t e d d u e t o i r r e l e va n c e o r r e d u n d a n c e .

E n h a n c e d w i t h a d y n a m ic t a b le o f c o n t e n t s .

, MADS MADLAD |2



Note from MADS MADLAD:

Thank you for buying my summary. I sincerely hope it helps you excel and learn
from this course. When I was writing these I sometimes struggled with this
program, but there were no summaries available.
This is why I decided to write something that is truly complete with a lot of
effort put into it. It helped me and my friends get good grades, but I also
always had you in mind, the future reader. When necessary, I always went the
extra mile to make this summary, more readable, organized and complete.
If you feel like it, leave me a review of how the course is going using this
summary, it will make my day to hear your opinion good or bad!


Check out my other extensive summaries for other MADS courses:




Available on:



Contact info:
If you need help or have an inquiry, contact me: https://www.georgedreemer.com
Connect with me on LinkedIn: https://www.linkedin.com/in/georgedreemer/
Donations:
By no means am I looking for fellow students to send me money! But if you feel like sending
me some ETH or BTC, you can do so here:
--> ETH: 0x123e086c6808459e7fC6Ac7F64a77dBA1dDe0149
--> BTC: bc1qgwzc82vph5v8rmzef4ywechjf85772n7m2e22g

, MADS MADLAD |3



wishes you good luck & perseverance.




Grades Testimony:

, MADS MADLAD |4

Table of Contents
Week 1............................................................................................................. 12
Reading – HBR Article (optional) ................................................................... 12
4 Steps to Management Questions ............................................................ 12
Reading – Book: Verhoef et al. (11.6 required +11.1 optional) ..................... 13
7 Steps of Opportunity finding ................................................................... 13
Reading – Book: Business Research Methods (2.1 optional + 2.2 required) .. 16
Week 2............................................................................................................. 20
Reading – Book: Verhoef et al.(Ch.1, 2.1-2.5, 3.4, 3.9, 4, 5) .......................... 20
Chapter 1 (required): “Data science and big data”........................................ 20
Chapter 2.1-2.5 (required): “Creating value with data science” .................... 23
2.1 INTRODUCTION ................................................................................ 23
2.2 DATA SCIENCE VALUE CREATION MODEL ......................................... 23
2.3 VALUE CREATION OBJECTIVES .......................................................... 24
2.3.1 Balance between V2F and V2C: ............................................... 24
2.3.2 V2S – Value to Society ................................................................. 25
2.3.3 Metrics for V2F and V2C .......................................................... 25
2.4 DATA ASSETS .................................................................................... 26
2.5 DATA ANALYTICS .................................................................................. 26
2.5.1 The power of visualization and storytelling ............................. 27
Chapter 3.4 & 3.9 (required): “CUSTOMER METRICS”................................... 27
3.4 CUSTOMER (FEEDBACK) METRICS .................................................... 27
First Dimension: Time span - Forward- vs. Backward-looking Metrics .. 28
Second Dimension: Measurement scale............................................... 29
3.4.1 Is there a silver metric? ........................................................... 29
3.4.2 Other theoretical relationship metrics .................................... 30
3.4.3 Customer equity drivers .............................................................. 30
3.4.4 Internal data sources ................................................................... 31
3.4.5 Online sources – Customer Reviews ............................................ 31
3.9 CUSTOMER METRICS ........................................................................ 32

, MADS MADLAD |5

3.9.1 Customer acquisition metrics ...................................................... 33
3.9.2 Customer development metrics .................................................. 33
3.9.3 Customer value metrics ............................................................... 34
3.9.4 Customer equity .......................................................................... 36
3.9.5 New big data metrics................................................................... 37
Chapter 4 (required): “Data Assets”.............................................................. 39
4.2 DATA SOURCES AND THE DIFFERENT TYPES OF DATA .......................... 39
4.2.1 External data sources vs. Internal data sources ........................... 39
4.2.2 Structured vs. Unstructured data ................................................ 40
4.2.3 Market data................................................................................. 41
4.2.5 Brand data ................................................................................... 42
4.2.7 Customer data ............................................................................. 44
4.3 USING THE DIFFERENT DATA SOURCES IN THE ERA OF BIG DATA ........ 45
4.4 DATA QUALITY AND DATA CLEANSING................................................. 46
4.4.1 Data Quality ................................................................................ 46
4.4.2 Data Cleansing ............................................................................. 47
4.4.3 Missing value and data fusion ..................................................... 48
Chapter 5 (required): “Data storing and integration” ................................... 48
5.1INTRODUCTION .................................................................................... 48
5.2 STORING AND INTEGRATING DATA SOURCES IN DATA WAREHOUSES. 48
5.2.1 Storing data in the data warehouse............................................. 49
5.2.2 The data model in a data warehouse .......................................... 50
5.2.3 Data integration into the data warehouse................................... 52
5.2.3.1 Extraction ............................................................................. 53
5.2.3.2 Transformation ..................................................................... 53
5.2.3.3 Loading ................................................................................. 53
5.3 STORING AND INTEGRATING DATA SOURCES IN DATA LAKES .............. 54
5.4 CHALLENGES OF DATA INTEGRATION IN THE ERA OF BIG DATA .......... 56
5.4.1 The technical challenges of integrated data ................................ 56
5.4.1.1 Integration at the individual level ......................................... 57

, MADS MADLAD |6

5.4.1.2 Integration at the intermediate level .................................... 57
5.4.1.3 Integration at the time level ..................................................... 57
5.4.2 The analytical challenges of integrated data ............................... 58
5.4.3 The business challenges of integrated data ................................. 58
5.4.3.1 Dealing with different data types ......................................... 58
5.4.3.2 Declared data: customer descriptors .................................... 59
5.4.3.3 Appended data ..................................................................... 59
5.4.3.4 Overlaid data ........................................................................ 59
5.4.3.5 Implied data ......................................................................... 60
Week 3 – no readings ...................................................................................... 61
Week 4 – no readings ...................................................................................... 61
Week 5............................................................................................................. 62
Reading – Wickham (2014) “Tidy Data” ........................................................ 62
Section 2: Three characteristics of a Tidy dataset ...................................... 62
Section 2.1: Data structure ................................................................... 62
Section 2.2: Data Semantics ................................................................. 63
Section 2.3: Tidy data ........................................................................... 63
Section 3: Operations to make a messy dataset tidy.................................. 64
Section 3.1: Column headers are values, not variable names ............... 64
3.2: Multiple variables are stored in one column ................................. 66
3.3: Variables are stored in both rows and columns............................. 67
3.4: Multiple types of observational units are stored in the same table
............................................................................................................. 68
3.5: A single observational unit is stored in multiple tables.................. 68
Section 4: Tidy tools (tools that input & output tidy data) ......................... 69
Section 4.1: Data Manipulation ............................................................ 69
Section 4.2: Visualization ..................................................................... 69
Section 4.3: Modeling .......................................................................... 70
Reading – de Jonge, E. and van der Loo, M. (2013) "An introduction to data
cleaning with R" ............................................................................................ 71

, MADS MADLAD |7

1 Introduction ............................................................................................ 71
1.1: Statistical analysis in 5 steps.......................................................... 71
1.2 Some general background in R ....................................................... 72
1.2.1 Variable types and indexing techniques .................................. 72
1.2.2 Special values .......................................................................... 72
2 From raw data to technically correct data .............................................. 72
2.1: Technically correct data in R.......................................................... 72
2.2: Reading text data into a R data.frame ........................................... 73
2.2.1 read.table() and its cousins ...................................................... 73
2.3: Type conversion ............................................................................ 77
2.3.1 Introduction to R’s typing system ............................................ 77
2.3.2 Recoding factors ...................................................................... 77
2.3.3 Converting dates ..................................................................... 78
2.4: character manipulation ................................................................. 79
2.4.1 String normalization ................................................................ 80
2.4.2 Approximate string matching .................................................. 81
2.5 Character encoding issues .............................................................. 84
3: From technically correct data to consistent data ................................... 84
3.1 Detection and localization of errors ............................................... 85
3.1.1 Missing values ......................................................................... 85
3.1.2 Special values .......................................................................... 86
3.1.3 Outliers .................................................................................... 87
3.1.4 Obvious inconsistencies........................................................... 88
3.2 Correction ...................................................................................... 90
3.2.1 Simple transformation rules .................................................... 91
3.2.2 Deductive correction ............................................................... 93
3.2.3 Deterministic imputation......................................................... 94
3.3 Imputation ..................................................................................... 95
3.3.1 Basic numeric imputation models ........................................... 96
3.3.2 Hot deck imputation ................................................................ 96

, MADS MADLAD |8

3.3.3 kNN-imputation ....................................................................... 97
3.3.4 Minimal value adjustment ........................................................... 98
Reading – Donders, A.G.T, van der Heijden, G.J.M.G, Stijnen, T and Moons,
K.G.M. (2006) "Review: A gentle introduction to imputation of missing values"
..................................................................................................................... 99
Reading – Schafer, J.L. and Graham, J.W. (2002), "Missing Data: Our View of
the State of the Art" ..................................................................................... 99
Week 6........................................................................................................... 100
Reading – Book: Chapter 7 and 8 ................................................................ 100
Chapter 7: Data Analytics............................................................................ 100
7.2 THE POWER OF ANALYTICS ................................................................ 100
7.3 STRATEGIES FOR ANALYZING DATA ................................................... 100
7.3.1 PROBLEM SOLVING ................................................................... 101
7.3.2 DATA EXPLOITATION ................................................................. 101
7.3.3 DATA MINING ............................................................................ 102
7.3.4 COLLATERAL CATCH................................................................... 103
7.4 TYPES OF DATA ANALYTICS ................................................................ 104
7.4.1 DESCRIPTIVE ANALYTICS ............................................................ 105
7.4.2 DIAGNOSTIC ANALYTICS ............................................................ 105
7.4.3 PREDICTIVE ANALYTICS.............................................................. 106
7.4.4 PRESCRIPTIVE ANALYTICS .......................................................... 106
7.5 HOW BIG DATA AND AI CHANGE ANALYTICS ..................................... 107
7.5.1.1 DATA SCIENCE ........................................................................ 107
7.5.1.2 AI ............................................................................................ 108
7.5.1.3 MACHINE LEARNING (ML) ...................................................... 108
7.5.1.4 DEEP LEARNING (DL) .............................................................. 109
7.6 ANALYTICAL METHODS AND TECHNIQUES......................................... 109
Chapter 8: Data Exploration ........................................................................ 110
8.1 INTRODUCTION.................................................................................. 110
8.2 DESCRIPTIVE ANALYSES – REPORTING ............................................... 111

, MADS MADLAD |9

8.3 DESCRIPTIVE ANALYSES – INVESTIGATING ONE-TO-ONE RELATIONSHIPS
................................................................................................................ 111
8.3.1 KPI CATEGORICAL, DRIVER CATEGORICAL ................................. 112
8.3.2 KPI NUMERICAL, DRIVER CATEGORICAL .................................... 113
8.3.3 KPI CATEGORICAL, DRIVER NUMERICAL .................................... 114
8.3.4 KPI NUMERICAL, DRIVER NUMERICAL ....................................... 116
8.4 SPECIAL CASES OF ONE-TO-ONE EXPLORATORY ANALYSES................ 117
8.4.1 PROFILING AND CUSTOMER CROSSINGS ................................... 117
8.4.2 DECILE ANALYSIS ....................................................................... 117
8.4.3 EXTERNAL PROFILING ................................................................ 118
8.4.4 ZIP CODE ANALYSIS.................................................................... 119
8.5 DYNAMIC ANALYSES .......................................................................... 119
8.5.1 TREND ANALYSIS ....................................................................... 120
8.5.2 MIGRATION ANALYSIS ............................................................... 121
8.5.3 LIKE-4-LIKE ANALYSIS ................................................................. 122
8.6 IDENTIFYING STRUCTURE IN DATA: UNSUPERVISED LEARNING ......... 123
8.6.1 CLUSTER ANALYSIS .................................................................... 123
8.6.1.1 EXECUTION ......................................................................... 123
8.6.1.2 SELECTION OF CLUSTER VARIABLES .................................... 123
8.6.1.3 DATA PREPARATION ........................................................... 124
8.6.1.4 RUNNING THE ANALYSIS..................................................... 124
8.6.1.5 SELECTION OF NUMBER OF CLUSTERS................................ 124
8.6.1.6 PROFILING THE CLUSTERS................................................... 124
8.6.2 PRINCIPAL COMPONENT ANALYSIS (PCA) .................................. 125
Week 7........................................................................................................... 127
Reading – Book: Chapter 10 ........................................................................ 127
Chapter 10: Creating Impact with Storytelling and Visualization ................ 127
10.1 INTRODUCTION ................................................................................ 127
10.2 FAILURE FACTORS FOR CREATING IMPACT ...................................... 128
10.3 STORYTELLING ................................................................................. 128

, M A D S M A D L A D | 10

10.3.1 CHECKLIST FOR A CLEAR STORYLINE ........................................ 130
10.4 VISUALIZATION ................................................................................ 130
10.4.1 CHOOSING THE CHART TYPE ................................................... 130
10.4.1.1 SHOWING RELATIONSHIP BETWEEN DATA POINTS .......... 130
10.4.1.2. COMPARING DATA POINTS .............................................. 131
10.4.1.3 COMPOSITION .................................................................. 132
10.4.1.4 DISTRIBUTION................................................................... 132
DECISION PROCESS FOR CHARTS (ABELA, 2008) ...................................... 133
10.4 MISLEADING GRAPHS....................................................................... 134
10.4.3.1 TRUNCATED GRAPHS ........................................................ 134
10.4.3.2 ADJUSTED AXIS ................................................................. 134
10.4.3.3 INCORRECT SCALING ........................................................ 135
10.4.3.4 LOGARITHMIC SCALING .................................................... 135
10.4.3.5 OMITTING DATA ............................................................... 136
10.4.3.6 SIMULATED TRENDS ......................................................... 136
10.4.3.7 REDUNDANT 3D PERSPECTIVE .......................................... 137
10.5 TRENDS IN VISUALIZATION .............................................................. 137
10.6 CONCLUSIONS .................................................................................. 137
Reading – Berinato, S (2016) ....................................................................... 138
Conceptual or Data Driven ....................................................................... 138
Declarative or Exploratory ....................................................................... 138
The 4 Types of Visual Communication ..................................................... 138
Idea Illustration .................................................................................. 139
Idea Generation ................................................................................. 140
Visual Discovery ................................................................................. 141
Everyday Datawiz ............................................................................... 142
Reading – Cleveland et al. (1984) ................................................................ 143
Reading – Swamy, P.R. (2013): Building Logic Into Communication Using the
Minto Pyramid Principle ............................................................................. 144
Storing and Retrieving Information .......................................................... 144

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
madsmadlad Rijksuniversiteit Groningen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
33
Lid sinds
3 jaar
Aantal volgers
12
Documenten
0
Laatst verkocht
2 weken geleden
MADS Madlad

My name is George, aka the MADS Madlad. I write premium study materials for the MSc Marketing Analytics and Data Science, that help you get good grades and help people in need. Namely, 100% of the profits made from my summaries are donated to local NGO's in Groningen, as well as national ones in the whole Netherlands. The list includes: - Dutch Cancer Society - Voedselbanken Groningen - AidsFonds - Alzheimer Nederland - LGBT+ Asylum Support - SIAN (Stichting Inclusive Action North, which includes Queer Pride Groningen, Groningen Feminist Network, Black Ladies of Groningen and asterisk).

Lees meer Lees minder
4,0

3 beoordelingen

5
1
4
1
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen