100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Complete Summary for Data Engineering for MADS (Lectures, Readings, Book Chapters, Weekly Quizzes and Practice Exam)

Beoordeling
4,0
(1)
Verkocht
7
Pagina's
208
Geüpload op
05-02-2023
Geschreven in
2022/2023

The best complete summary for Data Engineering for MADS (EBM213A05), it includes: Lectures, Readings & Book Chapters (Mandatory + Optional), Weekly Quizzes and the latest Practice Exam. Enhanced with a dynamic table of contents and meticulous organization for readability and easy studying. 100% of profit from this summary is donated to local Groningen NGOs, as well as national ones.

Meer zien Lees minder

















Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Chapter 1, chapter 2.1-2.5, chapter 3.4, 3.9, chapter 4 and chapter 5
Geüpload op
5 februari 2023
Aantal pagina's
208
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

SUMMARY OF EVERYTHING
LECTURES + READINGS + CHAPTERS +
AVAILABLE WEEKLY-QUIZZES + 2022 PRACTICE EXAM
Bonus: Week 7 lecture substituted for more extensive material.

E n h a n c e d w i t h a d y n a m ic t a b le o f c o n t e n t s .

, MADS MADLAD |2




Note from MADS MADLAD:

Thank you for buying my summary. I sincerely hope it helps you excel and learn
from this course. When I was writing these I sometimes struggled with this
program, but there were no summaries available.
This is why I decided to write something that is truly complete with a lot of
effort put into it. It helped me and my friends get good grades, but I also
always had you in mind, the future reader. When necessary, I always went the
extra mile to make this summary, more readable, organized and complete.
If you feel like it, leave me a review of how the course is going using this
summary, it will make my day to hear your opinion good or bad!


Check out my other extensive summaries for other MADS courses:




Available on:



Contact info:
If you need help or have an inquiry, contact me: https://www.georgedreemer.com
Connect with me on LinkedIn: https://www.linkedin.com/in/georgedreemer/
Donations:
By no means am I looking for fellow students to send me money! But if you feel like sending
me some ETH or BTC, you can do so here:
--> ETH: 0x123e086c6808459e7fC6Ac7F64a77dBA1dDe0149
--> BTC: bc1qgwzc82vph5v8rmzef4ywechjf85772n7m2e22g

, MADS MADLAD |3




wishes you good luck & perseverance.




Grades Testimony:

, MADS MADLAD |4


Table of Contents
Week 1 (Lectures+Readings) ............................................................................ 14
Lecture 0 (Intro) & 1.1 (MD->MQ->RQ) & HBR article ................................... 14
Management Dilemma and Questions, Research Questions ..................... 14
Management Dilemma......................................................................... 14
From Management Dilemma to Management Questions: ................... 15
Management Question defined: .......................................................... 15
From Management Question to Research Question ............................ 15
Management Question vs. Research Question:.................................... 16
From Research Question to Analysis Questions: .................................. 16
7 steps of the opportunity tree ............................................................ 16
Lecture 1.2 - supplement (Wehkamp lecture 2022) ...................................... 19
7 Elements of a Data Strategy .................................................................... 19
Data Warehouse vs. Data Lake .................................................................. 19
4 Ways to work with Data .......................................................................... 21
Data Science – mix of 3 fields of knowledge .............................................. 21
Domain Expertise (Business) ................................................................ 22
Technical Data Engineering .................................................................. 22
Math & Statistical Knowledge .............................................................. 22
Reading – HBR Article (optional) ................................................................... 24
4 Steps to Management Questions ............................................................ 24
Reading – Book: Verhoef et al. (11.6 required +11.1 optional) ..................... 25
7 Steps of Opportunity finding ................................................................... 25
Reading – Book: Business Research Methods (2.1 optional + 2.2 required) .. 28
Week 2 (Readings+Lecture) ............................................................................. 32
Reading – Book: Verhoef et al.(Ch.1, 2.1-2.5, 3.4, 3.9, 4, 5) .......................... 32
Chapter 1 (required): “Data science and big data”........................................ 32
Chapter 2.1-2.5 (required): “Creating value with data science” .................... 35
2.1 INTRODUCTION ................................................................................ 35
2.2 DATA SCIENCE VALUE CREATION MODEL ......................................... 35

, MADS MADLAD |5


2.3 VALUE CREATION OBJECTIVES .......................................................... 36
2.3.1 Balance between V2F and V2C: ............................................... 36
2.3.2 V2S – Value to Society ................................................................. 37
2.3.3 Metrics for V2F and V2C .......................................................... 37
2.4 DATA ASSETS .................................................................................... 38
2.5 DATA ANALYTICS .................................................................................. 38
2.5.1 The power of visualization and storytelling ............................. 39
Chapter 3.4 & 3.9 (required): “CUSTOMER METRICS”................................... 39
3.4 CUSTOMER (FEEDBACK) METRICS .................................................... 39
First Dimension: Time span - Forward- vs. Backward-looking Metrics .. 40
Second Dimension: Measurement scale............................................... 41
3.4.1 Is there a silver metric? ........................................................... 41
3.4.2 Other theoretical relationship metrics .................................... 42
3.4.3 Customer equity drivers .............................................................. 42
3.4.4 Internal data sources ................................................................... 43
3.4.5 Online sources – Customer Reviews ............................................ 43
3.9 CUSTOMER METRICS ........................................................................ 44
3.9.1 Customer acquisition metrics ...................................................... 45
3.9.2 Customer development metrics .................................................. 45
3.9.3 Customer value metrics ............................................................... 46
3.9.4 Customer equity .......................................................................... 48
3.9.5 New big data metrics................................................................... 49
Chapter 4 (required): “Data Assets”.............................................................. 51
4.2 DATA SOURCES AND THE DIFFERENT TYPES OF DATA .......................... 51
4.2.1 External data sources vs. Internal data sources ........................... 51
4.2.2 Structured vs. Unstructured data ................................................ 52
4.2.3 Market data................................................................................. 53
4.2.5 Brand data ................................................................................... 54
4.2.7 Customer data ............................................................................. 56
4.3 USING THE DIFFERENT DATA SOURCES IN THE ERA OF BIG DATA ........ 57

, MADS MADLAD |6


4.4 DATA QUALITY AND DATA CLEANSING................................................. 58
4.4.1 Data Quality ................................................................................ 58
4.4.2 Data Cleansing ............................................................................. 59
4.4.3 Missing value and data fusion ..................................................... 60
Chapter 5 (required): “Data storing and integration” ................................... 60
5.1INTRODUCTION .................................................................................... 60
5.2 STORING AND INTEGRATING DATA SOURCES IN DATA WAREHOUSES. 60
5.2.1 Storing data in the data warehouse............................................. 61
5.2.2 The data model in a data warehouse .......................................... 62
5.2.3 Data integration into the data warehouse................................... 64
5.2.3.1 Extraction ............................................................................. 65
5.2.3.2 Transformation ..................................................................... 65
5.2.3.3 Loading ................................................................................. 65
5.3 STORING AND INTEGRATING DATA SOURCES IN DATA LAKES .............. 66
5.4 CHALLENGES OF DATA INTEGRATION IN THE ERA OF BIG DATA .......... 68
5.4.1 The technical challenges of integrated data ................................ 68
5.4.1.1 Integration at the individual level ......................................... 69
5.4.1.2 Integration at the intermediate level .................................... 69
5.4.1.3 Integration at the time level ..................................................... 69
5.4.2 The analytical challenges of integrated data ............................... 70
5.4.3 The business challenges of integrated data ................................. 70
5.4.3.1 Dealing with different data types ......................................... 70
5.4.3.2 Declared data: customer descriptors .................................... 71
5.4.3.3 Appended data ..................................................................... 71
5.4.3.4 Overlaid data ........................................................................ 71
5.4.3.5 Implied data ......................................................................... 72
Lecture 2 – From ‘raw’ data to your own table: conceptual introduction ..... 73
Our first choice: level of analysis (aggregation level) ................................. 73
Four Types of Information ......................................................................... 73
Joining tables, aggregation, adding, external data ..................................... 74

, MADS MADLAD |7


INNER_JOIN.......................................................................................... 74
LEFT_JOIN /RIGHT_JOIN ....................................................................... 74
FULL_OUTER_JOIN ............................................................................... 75
Week 3 (Lecture) ............................................................................................. 79
Lecture – Working with SQL, Azure Data, Creating our own table: From ‘raw’
data to your own table with SQL................................................................... 79
Every SQL query to retrieve data consists of maximum 6 SQL instructions 79
Week 4 (Lecture) ............................................................................................. 80
Lecture – Combining Wehkamp data with external data in RStudio ............. 80
Two dimensions: Data source & Data type ................................................ 80
Sources for external data ........................................................................... 80
Integrating external data sources .............................................................. 82
Useful commands in R Studio .................................................................... 82
Week 5 (Readings+Lecture) ............................................................................. 83
Reading – Wickham (2014) “Tidy Data” ........................................................ 83
Section 2: Three characteristics of a Tidy dataset ...................................... 83
Section 2.1: Data structure ................................................................... 83
Section 2.2: Data Semantics ................................................................. 84
Section 2.3: Tidy data ........................................................................... 84
Section 3: Operations to make a messy dataset tidy.................................. 85
Section 3.1: Column headers are values, not variable names ............... 85
3.2: Multiple variables are stored in one column ................................. 87
3.3: Variables are stored in both rows and columns............................. 88
3.4: Multiple types of observational units are stored in the same table
............................................................................................................. 89
3.5: A single observational unit is stored in multiple tables.................. 89
Section 4: Tidy tools (tools that input & output tidy data) ......................... 90
Section 4.1: Data Manipulation ............................................................ 90
Section 4.2: Visualization ..................................................................... 90
Section 4.3: Modeling .......................................................................... 91

, MADS MADLAD |8


Reading – de Jonge, E. and van der Loo, M. (2013) "An introduction to data
cleaning with R" ............................................................................................ 92
1 Introduction ............................................................................................ 92
1.1: Statistical analysis in 5 steps.......................................................... 92
1.2 Some general background in R ....................................................... 93
1.2.1 Variable types and indexing techniques .................................. 93
1.2.2 Special values .......................................................................... 93
2 From raw data to technically correct data .............................................. 93
2.1: Technically correct data in R.......................................................... 93
2.2: Reading text data into a R data.frame ........................................... 94
2.2.1 read.table() and its cousins...................................................... 94
2.3: Type conversion ............................................................................ 98
2.3.1 Introduction to R’s typing system ............................................ 98
2.3.2 Recoding factors ...................................................................... 98
2.3.3 Converting dates ..................................................................... 99
2.4: character manipulation ............................................................... 100
2.4.1 String normalization .............................................................. 101
2.4.2 Approximate string matching ................................................ 102
2.5 Character encoding issues ............................................................ 105
3: From technically correct data to consistent data ................................. 105
3.1 Detection and localization of errors ............................................. 106
3.1.1 Missing values ....................................................................... 106
3.1.2 Special values ........................................................................ 107
3.1.3 Outliers .................................................................................. 108
3.1.4 Obvious inconsistencies......................................................... 109
3.2 Correction .................................................................................... 111
3.2.1 Simple transformation rules .................................................. 112
3.2.2 Deductive correction ............................................................. 114
3.2.3 Deterministic imputation....................................................... 115
3.3 Imputation ................................................................................... 116

, MADS MADLAD |9


3.3.1 Basic numeric imputation models ......................................... 117
3.3.2 Hot deck imputation .............................................................. 117
3.3.3 kNN-imputation ..................................................................... 118
3.3.4 Minimal value adjustment ......................................................... 119
Reading – Donders, A.G.T, van der Heijden, G.J.M.G, Stijnen, T and Moons,
K.G.M. (2006) "Review: A gentle introduction to imputation of missing values"
................................................................................................................... 120
Reading – Schafer, J.L. and Graham, J.W. (2002), "Missing Data: Our View of
the State of the Art" ................................................................................... 120
Lecture 5 – Data cleaning, outliers, missing data (1/2) ............................... 121
Data Quality ............................................................................................. 121
Data Cleaning........................................................................................... 121
Steps in Cleansing (lecture) ................................................................ 122
Parsing (1) ...................................................................................... 122
Correcting (2) ................................................................................. 123
Standardizing (3) ............................................................................ 123
Matching (4) ................................................................................... 124
Consolidating (5) ............................................................................ 124
Formatting the data (Tidy Data) ............................................................... 125
Packages for Tidying Data .................................................................. 125
After Data Cleaning: Sanity Check ............................................................ 126
Outliers .................................................................................................... 126
What are outliers? ............................................................................. 126
Why do we address outliers? ............................................................. 126
Detecting Outliers .............................................................................. 127
Treating Outliers ................................................................................ 128
Missing Data ............................................................................................ 129
MCAR, MAR, MNAR – Graphical representation (lecture) ............... 130
MCAR, MAR, MNAR: Academic & Simple explanation (ext. source) ... 131

, M A D S M A D L A D | 10


Lecture 5 – Detecting outliers/Mahalanobis distance, Multiple imputation
(2/2)............................................................................................................ 132
Detecting outliers/Mahalanobis Distance ................................................ 132
How to do it in R: ............................................................................... 135
Imputation ............................................................................................... 137
How to do it in R................................................................................. 138
Week 6 (Readings+Lecture) ........................................................................... 142
Reading – Book: Chapter 7 and 8 ................................................................ 142
Chapter 7: Data Analytics............................................................................ 142
7.2 THE POWER OF ANALYTICS ................................................................ 142
7.3 STRATEGIES FOR ANALYZING DATA ................................................... 142
7.3.1 PROBLEM SOLVING ................................................................... 143
7.3.2 DATA EXPLOITATION ................................................................. 143
7.3.3 DATA MINING ............................................................................ 144
7.3.4 COLLATERAL CATCH................................................................... 145
7.4 TYPES OF DATA ANALYTICS ................................................................ 146
7.4.1 DESCRIPTIVE ANALYTICS ............................................................ 147
7.4.2 DIAGNOSTIC ANALYTICS ............................................................ 147
7.4.3 PREDICTIVE ANALYTICS.............................................................. 148
7.4.4 PRESCRIPTIVE ANALYTICS .......................................................... 148
7.5 HOW BIG DATA AND AI CHANGE ANALYTICS ..................................... 149
7.5.1.1 DATA SCIENCE ........................................................................ 149
7.5.1.2 AI ............................................................................................ 150
7.5.1.3 MACHINE LEARNING (ML) ...................................................... 150
7.5.1.4 DEEP LEARNING (DL) .............................................................. 151
7.6 ANALYTICAL METHODS AND TECHNIQUES......................................... 151
Chapter 8: Data Exploration ........................................................................ 152
8.1 INTRODUCTION.................................................................................. 152
8.2 DESCRIPTIVE ANALYSES – REPORTING ............................................... 153

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
2 jaar geleden

4,0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
madsmadlad Rijksuniversiteit Groningen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
33
Lid sinds
3 jaar
Aantal volgers
12
Documenten
0
Laatst verkocht
2 weken geleden
MADS Madlad

My name is George, aka the MADS Madlad. I write premium study materials for the MSc Marketing Analytics and Data Science, that help you get good grades and help people in need. Namely, 100% of the profits made from my summaries are donated to local NGO's in Groningen, as well as national ones in the whole Netherlands. The list includes: - Dutch Cancer Society - Voedselbanken Groningen - AidsFonds - Alzheimer Nederland - LGBT+ Asylum Support - SIAN (Stichting Inclusive Action North, which includes Queer Pride Groningen, Groningen Feminist Network, Black Ladies of Groningen and asterisk).

Lees meer Lees minder
4,0

3 beoordelingen

5
1
4
1
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen