100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Interview

Class notes Mathematics Discrete Mathematics, ISBN: 9781792901690

Rating
-
Sold
-
Pages
263
Uploaded on
23-02-2021
Written in
2020/2021

Best Notes from Discrete Math Class, covered all important aspects in detail.

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Secondary school
Course
School year
1

Document information

Uploaded on
February 23, 2021
Number of pages
263
Written in
2020/2021
Type
Interview
Company
Unknown
Person
Unknown

Subjects

Content preview

Lecture Notes on Discrete Mathematics



July 30, 2019
T
AF
DR

, 2




DR
AF
T

,Contents

1 Basic Set Theory 7
1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Operations on sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Composition of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6 Equivalence relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 The Natural Number System 25
2.1 Peano Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Other forms of Principle of Mathematical Induction . . . . . . . . . . . . . . . . . . . 28
2.3 Applications of Principle of Mathematical Induction . . . . . . . . . . . . . . . . . . . 31
2.4 Well Ordering Property of Natural Numbers . . . . . . . . . . . . . . . . . . . . . . . . 33
T
AF



2.5 Recursion Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6 Construction of Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
DR




2.7 Construction of Rational Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Countable and Uncountable Sets 43
3.1 Finite and infinite sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Families of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Constructing bijections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Cantor-Schröder-Bernstein Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5 Countable and uncountable sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Elementary Number Theory 61
4.1 Division algorithm and its applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Modular arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Chinese Remainder Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Combinatorics - I 71
5.1 Addition and multiplication rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Permutations and combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.1 Counting words made with elements of a set S . . . . . . . . . . . . . . . . . . 73
5.2.2 Counting words with distinct letters made with elements of a set S . . . . . . . 74
5.2.3 Counting words where letters may repeat . . . . . . . . . . . . . . . . . . . . . 75
5.2.4 Counting subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.5 Pascal’s identity and its combinatorial proof . . . . . . . . . . . . . . . . . . . . 77

3

, 4 CONTENTS

5.2.6 Counting in two ways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Solutions in non-negative integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4 Binomial and multinomial theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.5 Circular arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.6 Set partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.7 Number partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.8 Lattice paths and Catalan numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Combinatorics - II 103
6.1 Pigeonhole Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Principle of Inclusion and Exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3 Generating Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.1 Generating Functions and Partitions of n . . . . . . . . . . . . . . . . . . . . . 116
6.4 Recurrence Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.5 Generating Function from Recurrence Relation . . . . . . . . . . . . . . . . . . . . . . 124

7 Introduction to Logic 133
7.1 Logic of Statements (SL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.2 Formulas and truth values in SL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.3 Equivalence and Normal forms in SL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.4 Inferences in SL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.5 Predicate logic (PL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
T


7.6 Equivalences and Validity in PL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
AF



7.7 Inferences in PL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
DR




8 Partially Ordered Sets, Lattices and Boolean Algebra 161
8.1 Partial Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.2 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
8.3 Boolean Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
8.4 Axiom of choice and its equivalents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

9 Graphs - I 191
9.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
9.2 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
9.3 Isomorphism in graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
9.4 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
9.5 Eulerian graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
9.6 Hamiltonian graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
9.7 Bipartite graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
9.8 Planar graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
9.9 Vertex coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

10 Graphs - II 221
10.1 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
10.2 Matching in graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
10.3 Ramsey numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
10.4 Degree sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
$7.99
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
amarpalsingh

Get to know the seller

Seller avatar
amarpalsingh Sydney University
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
4 year
Number of followers
0
Documents
2
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions