Solution nmand nmAnswer nmGuide: nmStewart nmKokoska, nmCalculus: nmConcepts nmand nmContexts, nm5e, nm2024, n m9780357632499, nmChapter nm2: nmSection
nm Concept nmCheck
SOLUTION AND ANSWER GUIDE nm nm nm
CALCULUS 5TH EDITION JAMES STEWART, KOKOSKA NM NM NM NM NM
Chapter 1-13 nm
CHAPTER 1: SECTION 1.1 NM NM NM
NM TABLE OF CONTENTS NM NM
End of Section Exercise Solutions ...................................................................................................... 1
nm nm nm nm
END OF SECTION EXERCISE SOLUTIONS
NM NM NM NM
1.1.1
(a) f (1) 3
nm nm nm
(b) f (1) 0.2
nm nm nm
(c) f (x) 1 when x = 0 and x = 3.
nm nm nm n m nm nm nm nm nm nm nm
(d) f (x) 0 when x ≈ –0.8.
nm nm nm nm nm nm nm
(e) The domain of f is
nm nm nm nm nm 2 nm nm x 4. The range of f is
nm nm nm nm nm nm nm 1
nm nm nm y 3.
nm nm
(f) f n m is increasing on the interval2 x 1.
nm nm nm nm nm nm nm nm
1.1.2
(a) f (4) 2;
nm g(3) 4 nm nm n m nm nm
(b) f (x) g(x) when x = –2 and x = 2.
nm nm nm nm nm nm nm nm nm nm nm
(c) f (x) 1 when x ≈ –3.4.
nm nm nm nm nm nm nm
(d) f is decreasing on the interval
nm nm nm nm nm nm 0 nm nm x 4.
nm nm
(e) The domain of f is
nm nm nm nm nm 4 nm nm x 4. The range of f is
nm nm nm nm nm nm nm nm 2 nm nm y 3.
nm nm
(f) The domain of g is
nm nm nm nm nm 4 nm nm x 4. The range of g is
nm nm nm nm nm nm nm nm 0.5 nm nm y 4.
nm nm
1.1.3
© nm2024 nmCengage. nmAll nmRights nmReserved. nmMay nmnot nmbe nmscanned, nmcopied nmor nmduplicated, nmor nmposted nmtonma 1
nmpublicly nmaccessible
website, nmin nmwhole nmor nmin nmpart.
,Solution nmand nmAnswer nmGuide: nmStewart nmKokoska, nmCalculus: nmConcepts nmand nmContexts, nm5e, nm2024, n m9780357632499, nmChapter nm2: nmSection
nm Concept nmCheck
(a) f (2) nm nm
(b) f (2) nm nm
(c) f (a) 3a2 a 2
nm nm nm nm nm nm nm
12 nm 16
nm
(d) f (a) 3a a nm nm nm
2
nm nm nm (e) f (a 1) 3a2 5a nm nm nm nm nm nm (f) 2 f (x) 6anm nm nm nm
2
nm 2a 4
nm nm nm
(g) 2 nm
(h) 4 nm nm
f (2a) 12a2 2anm nm nm nm nm f (a2) 3a4 a2 nm nm nm nm nm nm
2 nm nm 2 nm
f (a)2 3a2 a 2
2
9a4 6a3 13a2 4a 4
n m n m
(i) nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm
(j) f (a h) 3 a h a h 2 3a2 3h2 6ah a h 2
2 n m
nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm
1.1.4
f (3 h) f (3) (4 3(3 h) (3 h)2 ) 4 9 3h 9 6h h 2) 3h h2
(3 h)
nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm
nm nm nm nm
h h h h
1.1.5
f (a h) f (a) a3 3a2h 3ah2 h3 h 3a 3ah
2
h2 n m nm nm nm nm
3a2 3ah h2
nm nm nm nm nm nm
nm nm nm nm nm nm nm nm
3 nm nm nm nm nm
a nm
h h h
1.1.6
1 1 a x
nm n m
f (x) f (a)
nm nm nm
a nm
1
nm
n m
nm
x a axax
n m
n m
nm nm n m
x n m
nm
xa nm xa xa
nm ax(x a) ax nm nm nm nm nm nm
1.1.7
x 3 1 3 x 3 x 3 2x x 1 x 1
f (x) f (1) x 1 11 x 1 2
nm nm nm nm nm nm nm nm nm nm nm nm nm nm
x 1 1
nm nm
2 x
nm nm nm nm nm nm
nm nm
nm nm
nm nm
x 1 1
n m
x 1 nm x 1 x 1 x 1 nm
nm
nm
nm nm
nm
nm
x 1 x x 1 nm nm
nm
1 nm
1.1.8
nm x nm
x4 nm nm nm
x 9 2
nm nm
The domain nm f (x) nm
is
of
nm
nm
© nm2024 nmCengage. nmAll nmRights nmReserved. nmMay nmnot nmbe nmscanned, nmcopied nmor nmduplicated, nmor nmposted nmtonma 2
nmpublicly nmaccessible
website, nmin nmwhole nmor nmin nmpart.
,Solution nmand nmAnswer nmGuide: nmStewart nmKokoska, nmCalculus: nmConcepts nmand nmContexts, nm5e, nm2024, n m9780357632499, nmChapter nm2: nmSection
nm Concept nmCheck
| nmx 3,3.
nm
nm
1.1.9
2x3 5
is x | x 3, 2.
nm nm
The domain
nm f (x) 2
nm nm nm nm nm nm
x x
of
nm nm nm
nm nm
nm
6 nm
© nm2024 nmCengage. nmAll nmRights nmReserved. nmMay nmnot nmbe nmscanned, nmcopied nmor nmduplicated, nmor nmposted nmtonma 3
nmpublicly nmaccessible
website, nmin nmwhole nmor nmin nmpart.
, Solution nmand nmAnswer nmGuide: nmStewart nmKokoska, nmCalculus: nmConcepts nmand nmContexts, nm5e, nm2024, n m9780357632499, nmChapter nm2: nmSection
nm Concept nmCheck
1.1.10
3
The domain nm f (t)
nm 2t
nm is all real numbers.
nm nm nm
of
nm
nm 1
1.1.11
g t
nm nm nm is defined when 3 t 0 t 3 and 2 t 0 t 2. Thus, the domain is t 2,
nm nm nm nm nm nm nm nm nm nm nm nm n m nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm
or n m ,
2.
nm
1.1.12
The domain of nm nm n m h(x)
1 is , 0 5, .
nm nm nm nm
nm nm
1.1.13
The domain of nm nm n m F( 2 p is 0 p 4.
nm nm nm nm nm
p)
nm nm
1.1.14
u 1
f (u) u | u 2, 1.
nm
The domain of nm nm n m nm nm is nm nm nm nm nm nm
1
1
u 1 nm
1.1.15
(a) This function shifts the graph of y = |x| down two units and to the left one unit.
nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm
(b) This function shifts the graph of y = |x| down two units
nm nm nm nm nm nm nm nm nm nm nm
(c) This function reflects the graph of y = |x| about the x-axis, shifts it up 3 units and
nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm
then to the left 2 units.
nm nm nm nm nm nm
(d) This function reflects the graph of y = |x| about the x-axis and then shifts it up 4 units.
nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm
(e) This function reflects the graph of y = |x| about the x-axis, shifts it up 2 units then
nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm
four units to the left.
nm nm nm nm nm
(f) This function is a parabola that opens up with vertex at (0, 5). It is not a transformation of
nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm n m y = |x
nm nm
1.1.16
(a) g f x g x 2 1 10 x 2 1
nm nm nm nm nm nm nm nm nm
© nm2024 nmCengage. nmAll nmRights nmReserved. nmMay nmnot nmbe nmscanned, nmcopied nmor nmduplicated, nmor nmposted nmtonma 4
nmpublicly nmaccessible
website, nmin nmwhole nmor nmin nmpart.
nm Concept nmCheck
SOLUTION AND ANSWER GUIDE nm nm nm
CALCULUS 5TH EDITION JAMES STEWART, KOKOSKA NM NM NM NM NM
Chapter 1-13 nm
CHAPTER 1: SECTION 1.1 NM NM NM
NM TABLE OF CONTENTS NM NM
End of Section Exercise Solutions ...................................................................................................... 1
nm nm nm nm
END OF SECTION EXERCISE SOLUTIONS
NM NM NM NM
1.1.1
(a) f (1) 3
nm nm nm
(b) f (1) 0.2
nm nm nm
(c) f (x) 1 when x = 0 and x = 3.
nm nm nm n m nm nm nm nm nm nm nm
(d) f (x) 0 when x ≈ –0.8.
nm nm nm nm nm nm nm
(e) The domain of f is
nm nm nm nm nm 2 nm nm x 4. The range of f is
nm nm nm nm nm nm nm 1
nm nm nm y 3.
nm nm
(f) f n m is increasing on the interval2 x 1.
nm nm nm nm nm nm nm nm
1.1.2
(a) f (4) 2;
nm g(3) 4 nm nm n m nm nm
(b) f (x) g(x) when x = –2 and x = 2.
nm nm nm nm nm nm nm nm nm nm nm
(c) f (x) 1 when x ≈ –3.4.
nm nm nm nm nm nm nm
(d) f is decreasing on the interval
nm nm nm nm nm nm 0 nm nm x 4.
nm nm
(e) The domain of f is
nm nm nm nm nm 4 nm nm x 4. The range of f is
nm nm nm nm nm nm nm nm 2 nm nm y 3.
nm nm
(f) The domain of g is
nm nm nm nm nm 4 nm nm x 4. The range of g is
nm nm nm nm nm nm nm nm 0.5 nm nm y 4.
nm nm
1.1.3
© nm2024 nmCengage. nmAll nmRights nmReserved. nmMay nmnot nmbe nmscanned, nmcopied nmor nmduplicated, nmor nmposted nmtonma 1
nmpublicly nmaccessible
website, nmin nmwhole nmor nmin nmpart.
,Solution nmand nmAnswer nmGuide: nmStewart nmKokoska, nmCalculus: nmConcepts nmand nmContexts, nm5e, nm2024, n m9780357632499, nmChapter nm2: nmSection
nm Concept nmCheck
(a) f (2) nm nm
(b) f (2) nm nm
(c) f (a) 3a2 a 2
nm nm nm nm nm nm nm
12 nm 16
nm
(d) f (a) 3a a nm nm nm
2
nm nm nm (e) f (a 1) 3a2 5a nm nm nm nm nm nm (f) 2 f (x) 6anm nm nm nm
2
nm 2a 4
nm nm nm
(g) 2 nm
(h) 4 nm nm
f (2a) 12a2 2anm nm nm nm nm f (a2) 3a4 a2 nm nm nm nm nm nm
2 nm nm 2 nm
f (a)2 3a2 a 2
2
9a4 6a3 13a2 4a 4
n m n m
(i) nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm
(j) f (a h) 3 a h a h 2 3a2 3h2 6ah a h 2
2 n m
nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm
1.1.4
f (3 h) f (3) (4 3(3 h) (3 h)2 ) 4 9 3h 9 6h h 2) 3h h2
(3 h)
nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm
nm nm nm nm
h h h h
1.1.5
f (a h) f (a) a3 3a2h 3ah2 h3 h 3a 3ah
2
h2 n m nm nm nm nm
3a2 3ah h2
nm nm nm nm nm nm
nm nm nm nm nm nm nm nm
3 nm nm nm nm nm
a nm
h h h
1.1.6
1 1 a x
nm n m
f (x) f (a)
nm nm nm
a nm
1
nm
n m
nm
x a axax
n m
n m
nm nm n m
x n m
nm
xa nm xa xa
nm ax(x a) ax nm nm nm nm nm nm
1.1.7
x 3 1 3 x 3 x 3 2x x 1 x 1
f (x) f (1) x 1 11 x 1 2
nm nm nm nm nm nm nm nm nm nm nm nm nm nm
x 1 1
nm nm
2 x
nm nm nm nm nm nm
nm nm
nm nm
nm nm
x 1 1
n m
x 1 nm x 1 x 1 x 1 nm
nm
nm
nm nm
nm
nm
x 1 x x 1 nm nm
nm
1 nm
1.1.8
nm x nm
x4 nm nm nm
x 9 2
nm nm
The domain nm f (x) nm
is
of
nm
nm
© nm2024 nmCengage. nmAll nmRights nmReserved. nmMay nmnot nmbe nmscanned, nmcopied nmor nmduplicated, nmor nmposted nmtonma 2
nmpublicly nmaccessible
website, nmin nmwhole nmor nmin nmpart.
,Solution nmand nmAnswer nmGuide: nmStewart nmKokoska, nmCalculus: nmConcepts nmand nmContexts, nm5e, nm2024, n m9780357632499, nmChapter nm2: nmSection
nm Concept nmCheck
| nmx 3,3.
nm
nm
1.1.9
2x3 5
is x | x 3, 2.
nm nm
The domain
nm f (x) 2
nm nm nm nm nm nm
x x
of
nm nm nm
nm nm
nm
6 nm
© nm2024 nmCengage. nmAll nmRights nmReserved. nmMay nmnot nmbe nmscanned, nmcopied nmor nmduplicated, nmor nmposted nmtonma 3
nmpublicly nmaccessible
website, nmin nmwhole nmor nmin nmpart.
, Solution nmand nmAnswer nmGuide: nmStewart nmKokoska, nmCalculus: nmConcepts nmand nmContexts, nm5e, nm2024, n m9780357632499, nmChapter nm2: nmSection
nm Concept nmCheck
1.1.10
3
The domain nm f (t)
nm 2t
nm is all real numbers.
nm nm nm
of
nm
nm 1
1.1.11
g t
nm nm nm is defined when 3 t 0 t 3 and 2 t 0 t 2. Thus, the domain is t 2,
nm nm nm nm nm nm nm nm nm nm nm nm n m nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm
or n m ,
2.
nm
1.1.12
The domain of nm nm n m h(x)
1 is , 0 5, .
nm nm nm nm
nm nm
1.1.13
The domain of nm nm n m F( 2 p is 0 p 4.
nm nm nm nm nm
p)
nm nm
1.1.14
u 1
f (u) u | u 2, 1.
nm
The domain of nm nm n m nm nm is nm nm nm nm nm nm
1
1
u 1 nm
1.1.15
(a) This function shifts the graph of y = |x| down two units and to the left one unit.
nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm
(b) This function shifts the graph of y = |x| down two units
nm nm nm nm nm nm nm nm nm nm nm
(c) This function reflects the graph of y = |x| about the x-axis, shifts it up 3 units and
nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm
then to the left 2 units.
nm nm nm nm nm nm
(d) This function reflects the graph of y = |x| about the x-axis and then shifts it up 4 units.
nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm
(e) This function reflects the graph of y = |x| about the x-axis, shifts it up 2 units then
nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm
four units to the left.
nm nm nm nm nm
(f) This function is a parabola that opens up with vertex at (0, 5). It is not a transformation of
nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm n m y = |x
nm nm
1.1.16
(a) g f x g x 2 1 10 x 2 1
nm nm nm nm nm nm nm nm nm
© nm2024 nmCengage. nmAll nmRights nmReserved. nmMay nmnot nmbe nmscanned, nmcopied nmor nmduplicated, nmor nmposted nmtonma 4
nmpublicly nmaccessible
website, nmin nmwhole nmor nmin nmpart.