100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Solution Manual For Calculus 5th Edition by James Stewart, Kokoska Chapter 1-13

Rating
-
Sold
-
Pages
714
Grade
A+
Uploaded on
19-12-2025
Written in
2025/2026

Solution Manual For Calculus 5th Edition by James Stewart, Kokoska Chapter 1-13

Institution
Solution Manual
Course
Solution Manual











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Solution Manual
Course
Solution Manual

Document information

Uploaded on
December 19, 2025
Number of pages
714
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

Solution and Answer Guide: Stewart Kokoska, Calculus: Concepts and Contexts, 5e, 2024, 9780357632499, Chapter 2: Section Concept
vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd


Check


SOLUTION AND ANSWER GUIDE vd vd vd




CALCULUS 5TH EDITION JAMES STEWART, KOKOSKA VD VD VD VD VD




Chapter 1-13 vd




CHAPTER 1: SECTION 1.1 VD VD VD




VD TABLE OF CONTENTS VD VD




End of Section Exercise Solutions ............................................................................................................. 1
vd vd vd vd




END OF SECTION EXERCISE SOLUTIONS
VD VD VD VD




1.1.1
(a) f (1)  3 vd vd vd




(b) f (1)  0.2 vd vd vd




(c) f (x) 1 when x = 0 and x = 3.
vd vd vd v d vd vd vd vd vd vd vd




(d) f (x)  0 when x ≈ –0.8.
vd vd vd vd vd vd vd




(e) The domain of f is vd 2  x  4. The range of f is 1
vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd y  3.
vd vd




(f) f v d is increasing on the interval2  x 1.
vd vd vd vd vd vd vd vd




1.1.2
(a) f (4)  2; g(3)  4
vd vd vd v d vd vd




(b) f (x)  g(x) when x = –2 and x = 2.
vd vd vd vd vd vd vd vd vd vd vd




(c) f (x)  1 when x ≈ –3.4.
vd vd vd vd vd vd vd




(d) f is decreasing on the interval
vd vd vd vd vd vd 0  x  4.
vd vd vd vd




(e) The domain of f is vd vd vd vd vd 4  x  4. The range of f is 2 
vd vd vd vd vd vd vd vd vd vd vd vd y  3.
vd vd




(f) The domain of g is vd vd vd vd vd 4  x  4. The range of g is 0.5 
vd vd vd vd vd vd vd vd vd vd vd vd y  4.
vd vd




1.1.3




1

,Solution and Answer Guide: Stewart Kokoska, Calculus: Concepts and Contexts, 5e, 2024, 9780357632499, Chapter 2: Section Concept
vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd


Check

(a) f (2) 12 vd vd vd
(b) f (2) 16 vd vd vd
(c) f (a)  3a2  a  2
vd vd vd vd vd vd vd




(d) f (a)  3a2  a  2
vd vd vd vd vd vd vd (e) f (a 1)  3a2 vd vd vd vd vd  5a  4 vd vd vd (f) 2 f (x)  6a2  2a  4
vd vd vd vd vd vd vd vd




(g) f (2a) 12a2  2a  2
vd vd vd vd vd vd vd
(h) f (a2)  3a4  a2  2
vd vd vd vd vd vd vd




(i) f (a)  3a2  a  2
2 2
 9a4 6a3 13a2  4a  4
v d v d


vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd




(j) f (a  h)  3  a  h  a  h 2  3a2  3h2  6ah  a  h  2
2 v d

vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd




1.1.4

f (3 h)  f (3) (43(3 h) (3 h)2)  4 93h96h h2) 3h h2
    (3  h)
vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd

vd vd vd vd


h h h h


1.1.5

a3  3a2h  3ah2  h3  a3  h 3a  3ah  h  3a2  3ah  h2
2 2
f (a  h)  f (a) v d vd vd vd vd




vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd
vd vd vd vd vd



h h h


1.1.6

1 1 a x
 
vd v d


f (x)  f (a)
vd vd vd vd





a x   1

vd 
v d




vd
x a  ax ax v d
v d
vd vd
vd v d





v d





xa vd vd xa xa ax(x  a)
vd ax vd vd vd vd vd




1.1.7

x  3 1 3 x 3 x  3 2x  2 x 1 x 1
 2
vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd



f (x)  f (1) x 1 11 x 1 x 1   x 1  1
vd vd

vd

 
vd vd vd vd vd
 vd
x 1  vd
vd vd
vd vd
vd vd




x 1 x 1 x 1 x 1
v d


vd
x 1 vd
vd
 x 1 vd vd vd
vd
vd




x 1 vd




1.1.8
x4
| x  3,3.
vd vd v d


The domain vd f (x)  vd vd
is vd vd vd



of
vd
vd x vd



x 9 2
vd vd



v



1.1.9 T d
m n of vd

d
h a
o
e i

2

, Solution and Answer Guide: Stewart Kokoska, Calculus: Concepts and Contexts, 5e, 2024, 9780357632499, Chapter 2: Section Concept
vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd


Check


2x3  |x
f (x)  is x
vd
vd vd
vd

5
vd vd vd
vd
3,
vd vd



x2  x vd vd
2.
6
vd vd




3

, Solution and Answer Guide: Stewart Kokoska, Calculus: Concepts and Contexts, 5e, 2024, 9780357632499, Chapter 2: Section Concept
vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd


Check




1.1.10

The domain vd f (t)  3 2t 1 is all real numbers.
vd vd vd vd vd vd vd



of
vd




1.1.11

g t 
vd vd vd  is defined when 3  t  0  t  3and 2  t  0  t  2. Thus, the domain is t  2,
vd vd vd vd vd vd vd vd vd vd vd vd v d vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd




or
v d ,2. vd




1.1.12

The domain of h(x)
vd vd v d

1 is , 0 5, .
vd vd vd vd



vd  vd




1.1.13

The domain ofvd vd v d F( p) vd 2vd p is0  p  4. vd vd vd vd



vd 

1.1.14
u 1
f (u)  is u | u  2,1.
vd

The domain ofvd vd v d vd vd vd vd vd vd vd vd


1
1
u 1 vd




1.1.15
(a) This function shifts the graph of y = |x| down two units and to the left one unit.
vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd



(b) This function shifts the graph of y = |x| down two units
vd vd vd vd vd vd vd vd vd vd vd



(c) This function reflects the graph of y = |x| about the x-axis, shifts it up 3 units and then to the
vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd



left 2 units.
vd vd vd



(d) This function reflects the graph of y = |x| about the x-axis and then shifts it up 4 units.
vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd



(e) This function reflects the graph of y = |x| about the x-axis, shifts it up 2 units then four units
vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd



to the left.
vd vd vd



(f) This function is a parabola that opens up with vertex at (0, 5). It is not a transformation of y = |x|.
vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd vd v d vd vd




1.1.16

(a) g f  x    g  x 2 1 10  x 2 1
vd vd vd vd vd vd vd vd vd




(b) f g 4 f 104 402 1 1601
vd vd vd vd vd vd vd vd vd vd




4

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Prose1 Strayer University
View profile
Follow You need to be logged in order to follow users or courses
Sold
621
Member since
1 year
Number of followers
70
Documents
6511
Last sold
1 day ago
REALITIEXAM

I know how frustrating it can get with all those assignments mate. Nursing Being my main profession line, i have essential guides that are A graded, I am a very friendly person so don

4.5

298 reviews

5
228
4
24
3
20
2
8
1
18

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions