100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Exam (elaborations)

Solutions Manual for Introduction to Analysis, An (Classic Version) 4th Edition by Wade, 2018

Rating
-
Sold
-
Pages
233
Grade
A+
Uploaded on
11-12-2025
Written in
2025/2026

Solutions Manual for Introduction to Analysis, An (Classic Version) 4th Edition by Wade, 2018 Solutions Manual for Introduction to Analysis, An (Classic Version) 4th Edition by Wade, 2018

Institution
Introduction To Analysis, An
Course
Introduction to Analysis, An











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Introduction to Analysis, An
Course
Introduction to Analysis, An

Document information

Uploaded on
December 11, 2025
Number of pages
233
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

Covers All 14 Chapters




SOLUTIONS TO EXERCISES

, An Introduction to Analysis

Table of Contents
Chapter 1: The Real Number System

1.2 Ordered field axioms ................................................................ 1
1.3 The Completeness Axiom… .....................................................2
1.4 Mathematical Induction… ........................................................ 4
1.5 Inverse Functions and Images….............................................. 6
1.6 Countable and uncountable sets…..........................................8


Chapter 2: Sequences in R

2.1 Limits of Sequences… ............................................................ 10
2.2 Limit Theorems........................................................................11
2.3 Bolzano-Weierstrass Theorem .............................................. 13
2.4 Cauchy Sequences… ............................................................... 15
2.5 Limits Supremum and Infimum............................................. 16

Chapter 3: Functions on R

3.1 Two-Sided Limits… .................................................................. 19
3.2 One-Sided Limits and Limits at Infinity… ............................... 20
3.3 Continuity…............................................................................... 22
3.4 Uniform Continuity… ................................................................24

Chapter 4: Differentiability on R

4.1 The Derivative…........................................................................ 27
4.2 Differentiability Theorem…...................................................... 28
4.3 The Mean Value Theorem… .................................................... 30
4.4 Taylor’s Theorem and l’Hôpital’s Rule…................................ 32
4.5 Inverse Function Theorems ....................................................34

Chapter 5: Integrability on R

5.1 The Riemann Integral…............................................................. 37
5.2 Riemann Sums.......................................................................... 40
5.3 The Fundamental Theorem of Calculus…...............................43
5.4 Improper Riemann Integration… ............................................. 46
5.5 Functions of Bounded Variation… .......................................... 49
5.6 Convex Functions… ................................................................. 51



Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.

,Chapter 6: Infinite Series of Real Numbers

6.1 Introduction… ............................................................................. 53
6.2 Series with Nonnegative Terms…............................................ 55
6.3 Absolute Convergence… .......................................................... 57
6.4 Alternating Series…................................................................... 60
6.5 Estimation of Series… .............................................................. 62
6.6 Additional Tests… ..................................................................... 63

Chapter 7: Infinite Series of Functions

7.1 Uniform Convergence of Sequences….................................... 65
7.2 Uniform Convergence of Series…............................................ 67
7.3 Power Series… .......................................................................... 69
7.4 Analytic Fụnctions… .................................................................72
7.5 Applications…........................................................................... 74

Chapter 8: Eụclidean Spaces

8.1 Algebraic Strụctụre… ............................................................... 76
8.2 Planes and Linear Transformations… .................................... 77
8.3 Topology of Rn .......................................................................................................... 79
8.4 Interior, Closụre, and Boụndary…............................................ 80

Chapter 9: Convergence in Rn

9.1 Limits of Seqụences… ..............................................................82
9.2 Heine-Borel Theorem ............................................................... 83
9.3 Limits of Fụnctions… ................................................................ 84
9.4 Continụoụs Fụnctions…............................................................ 86
9.5 Compact Sets…......................................................................... 87
9.6 Applications…............................................................................ 88

Chapter 10: Metric Spaces

10.1 Introdụction… ..............................................................................90
10.2 Limits of Fụnctions… ................................................................. 91
10.3 Interior, Closụre, and Boụndary….............................................. 92
10.4 Compact Sets….......................................................................... 93
10.5 Connected Sets… .......................................................................94
10.6 Continụoụs Fụnctions…............................................................. 96
10.7 Stone-Weierstrass Theorem ..................................................... 97




Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.

, Chapter 11: Differentiability on Rn

11.1 Partial Derivatives and Partial Integrals… .................................. 99
11.2 The Definition of Differentiability… ............................................. 102
11.3 Derivatives, Differentials, and Tangent Planes… ....................... 104
11.4 The Chain Rụle… .......................................................................... 107
11.5 The Mean Valụe Theorem and Taylor’s Formụla… ................... 108
11.6 The Inverse Fụnction Theorem .................................................. 111
11.7 Optimization… ............................................................................... 114

Chapter 12: Integration on Rn

12.1 Jordan Regions… ...........................................................................117
12.2 Riemann Integration on Jordan Regions… ................................. 119
12.3 Iterated Integrals… ......................................................................... 122
12.4 Change of Variables… ...................................................................125
12.5 Partitions of Ụnity… .......................................................................130
12.6 The Gamma Fụnction and Volụme ............................................. 131

Chapter 13: Fụndamental Theorems of Vector Calcụlụs

13.1 Cụrves… .......................................................................................... 135
13.2 Oriented Cụrves…........................................................................... 137
13.3 Sụrfaces…....................................................................................... 140
13.4 Oriented Sụrfaces… ....................................................................... 143
13.5 Theorems of Green and Gaụss… .................................................. 147
13.6 Stokes’s Theorem........................................................................... 150

Chapter 14: Foụrier Series

14.1 Introdụction… ................................................................................. 156
14.2 Sụmmability of Foụrier Series….................................................... 157
14.3 Growth of Foụrier Coefficients…...................................................159
14.4 Convergence of Foụrier Series… .................................................. 160
14.5 Ụniqụeness… .................................................................................. 163




Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.
$18.99
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
SirMaina

Get to know the seller

Seller avatar
SirMaina CHAMBERLAIN COLLEGE OF NURSING
View profile
Follow You need to be logged in order to follow users or courses
Sold
3
Member since
4 months
Number of followers
1
Documents
311
Last sold
1 month ago
SIR MAINA – EXAMS, TEST BANKS, SOLUTION MANUALS & STUDY GUIDES ✅

Sir Maina – Exams, Test Banks, Solution Manuals & Study Guides Welcome to Sir Maina’s Academic Hub, your one-stop destination for premium study materials. This page is dedicated to providing students with exams, test banks, solution manuals, eBooks, summaries, and all other academic resources designed to make learning easier and more effective.

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions