100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Case

Ejercicios del método de variación de parámetros.

Rating
-
Sold
-
Pages
6
Grade
A+
Uploaded on
16-02-2021
Written in
2020/2021

Ejercicios del método de variación de parámetros.

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Course

Document information

Uploaded on
February 16, 2021
Number of pages
6
Written in
2020/2021
Type
Case
Professor(s)
Espiritu
Grade
A+

Subjects

Content preview

Método de variación de parámetros.

El método de variación de parámetros permite resolver ecuaciones diferenciales de segundo orden, lineales, con
coeficientes constantes, no homogéneas, la cual tiene la forma:
𝑑2 𝑦 𝑑𝑦
𝑎2 (𝑥) 𝑑𝑥 2 + 𝑎1 (𝑥) 𝑑𝑥 + 𝑎0 (𝑥)𝑦 = 𝑓(𝑥) la que puede escribir en la forma característica como

𝑑2 𝑦 𝑎 (𝑥) 𝑑𝑦 𝑎 (𝑥) 𝑑2 𝑦 𝑑𝑦
𝑑𝑥 2
+ 𝑎1 (𝑥) 𝑑𝑥 + 𝑎0 (𝑥) 𝑦 = 𝑓(𝑥) o 𝑑𝑥 2
+ 𝑃(𝑥) 𝑑𝑥 + 𝑄(𝑥)𝑦 = 𝑓(𝑥) para coeficientes variables
2 2

𝑑2 𝑦 𝑑𝑦
𝑑𝑥 2
+ 𝑃(𝑥) 𝑑𝑥 + 𝑄(𝑥)𝑦 = 0 para la homogénea

En general la solución de la ecuación diferencial está dada por la suma de la solución de la homogénea más la solución
particular, 𝑦 = 𝑦𝐻 + 𝑦𝑃

La solución de la parte homogénea se obtiene por los procedimientos anteriormente tratados.

Para la solución particular partiremos de proponer que:

𝑦𝑝 = 𝑢1 𝑦1 + 𝑢2 𝑦2

𝑦𝑃′ = 𝑢1 𝑦1′ + 𝑢1′ 𝑦1 + 𝑢2 𝑦2′ + 𝑢2′ 𝑦2
𝑦𝑃′′ = 𝑢1 𝑦1′′ + 𝑦1′ 𝑢1′ + 𝑢1′ 𝑦1′ + 𝑢1′′ 𝑦1 + 𝑢2 𝑦2′′ + 𝑦2′ 𝑢2′ + 𝑢2′ 𝑦2′ + 𝑢2′′ 𝑦2
𝑢1 𝑦1′′ + 𝑦1′ 𝑢1′ + 𝑢1′ 𝑦1′ + 𝑢1′′ 𝑦1 + 𝑢2 𝑦2′′ + 𝑦2′ 𝑢2′ + 𝑢2′ 𝑦2′ + 𝑢2′′ 𝑦2 + 𝑃(𝑥)(𝑢1 𝑦1′ + 𝑢1′ 𝑦1 + 𝑢2 𝑦2′ + 𝑢2′ 𝑦2 ) + 𝑄(𝑥)(𝑢1 𝑦1 + 𝑢2 𝑦2 ) = 𝑓(𝑥)
𝑢1 (𝑦1′′ + 𝑃(𝑥)𝑦1′ + 𝑄(𝑥)𝑦1 ) +𝑢2 (𝑦2′′ + 𝑃(𝑥)𝑦2′ + 𝑄(𝑥)𝑦2 ) + 𝑦1′ 𝑢1′ + 𝑢1′ 𝑦1′ + 𝑢1′′ 𝑦1 + 𝑦2′ 𝑢2′ + 𝑢2′ 𝑦2′ + 𝑢2′′ 𝑦2 + 𝑃(𝑥)(𝑢1′ 𝑦1 + 𝑢2′ 𝑦2 ) = 𝑓(𝑥)

Si 𝑦1′′ + 𝑃(𝑥)𝑦1′ + 𝑄(𝑥)𝑦1 = 0 y 𝑦2′′ + 𝑃(𝑥)𝑦2′ + 𝑄(𝑥)𝑦2 = 0
𝑦1′ 𝑢1′ + 𝑢1′ 𝑦1′ + 𝑢1′′ 𝑦1 + 𝑦2′ 𝑢2′ + 𝑢2′ 𝑦2′ + 𝑢2′′ 𝑦2 + 𝑃(𝑥)(𝑢1′ 𝑦1 + 𝑢2′ 𝑦2 ) = 𝑓(𝑥)

𝑢1′ 𝑦1′ + 𝑢1′′ 𝑦1 + 𝑢2′ 𝑦2′ + 𝑢1′′ 𝑦1 + 𝑢1′ 𝑦1′ + 𝑢2′ 𝑦2′ + 𝑃(𝑥)(𝑢1′ 𝑦1 + 𝑢2′ 𝑦2 ) = 𝑓(𝑥)
𝑑
(𝑢1′ 𝑦1 + 𝑢2′ 𝑦2 ) + 𝑢1′ 𝑦1′ + 𝑢2′ 𝑦2′ + 𝑃(𝑥)(𝑢1′ 𝑦1 + 𝑢2′ 𝑦2 ) = 𝑓(𝑥)
𝑑𝑥

𝑢1′ 𝑦1 + 𝑢2′ 𝑦2 = 0
𝑢1′ 𝑦1′ + 𝑢2′ 𝑦2′ = 𝑓(𝑥)
Lo cual es un sistema de ecuaciones diferenciales que se pueden resolver por determinantes.
𝑦1 𝑦2 0 𝑦2 𝑦1 0
𝑤 = |𝑦 ′ 𝑦2′ | ; 𝑤1 = |𝑓(𝑥) 𝑦2′ | ; 𝑤2 = |𝑦1′ |
1 𝑓(𝑥)
𝑤1 𝑤1 𝑤2 𝑤2
𝑢1′ = 𝑤
, 𝑢1 = ∫ 𝑤
𝑑𝑥 ; 𝑢2′ = 𝑤
, 𝑢2 = ∫ 𝑤
𝑑𝑥

𝑦𝑃 = 𝑢1 𝑦1 + 𝑢2 𝑦2



Ejemplo.

Resuelva la siguiente ecuación diferencial de segundo orden, lineal,

con coeficientes constantes, no homogénea.
𝑑2 𝑦
𝑑𝑥 2
+ 𝑦 = sec (𝑥) sujeta a 𝑦(0) = 1 ; 𝑦′(0) = −1

, Solución.
𝑑2 𝑦
+ 𝑦 = sec (𝑥) ; 𝑦(0) = 1 ; 𝑦′(0) = −1
𝑑𝑥 2

𝑑2 𝑦
Primero encontramos la solución de la homogénea, para 𝑑𝑥 2
+ 𝑦 = 0.

Utilizando la ecuación auxiliar 𝑚2 + 1 = 0; 𝑚1,2 = ±𝑖 como ℂ = 𝛼 ± 𝛽𝑖

Donde 𝛼 = 0 y 𝛽 = 1, entonces la solución es 𝑦𝐻 = 𝐶1 cos(𝑥) + 𝐶2 𝑠𝑒𝑛(𝑥)

Para la solución particular consideramos que 𝑦𝑝 = 𝑢1 𝑦1 + 𝑢2 𝑦2 entonces,

𝑦1 = cos (𝑥) ; 𝑦1′ = −𝑠𝑒𝑛(𝑥) ; 𝑦2 = sen (𝑥) ; 𝑦2′ = 𝑐𝑜𝑠(𝑥).
cos(𝑥) 𝑠𝑒𝑛(𝑥)
𝑤=| | = 𝑐𝑜𝑠 2 (𝑥) + 𝑠𝑒𝑛2 (𝑥) = 1
−𝑠𝑒𝑛(𝑥) cos(𝑥)
0 𝑠𝑒𝑛(𝑥) 1
𝑤1 = | | = − sec(𝑥) 𝑠𝑒𝑛(𝑥) = − cos(𝑥) 𝑠𝑒𝑛(𝑥) = −tan (𝑥)
sec (𝑥) cos(𝑥)
cos (𝑥) 0 1
𝑤2 = | | = sec(𝑥) 𝑐𝑜𝑠(𝑥) = cos(𝑥) 𝑐𝑜𝑠(𝑥) = 1
−sen (𝑥) sec (𝑥)

𝑢1 = ∫ − tan(𝑥) 𝑑𝑥 = ln (cos (𝑥) 𝑢2 = ∫ 𝑑𝑥 = 𝑥

𝑦𝑝 = cos(𝑥) ln(cos(𝑥)) + 𝑥𝑠𝑒𝑛(𝑥)

𝑦 = 𝐶1 cos(𝑥) + 𝐶2 𝑠𝑒𝑛(𝑥) + cos(𝑥) ln(cos(𝑥)) + 𝑥𝑠𝑒𝑛(𝑥)
𝑦 ′ = −𝐶1 sen(𝑥) + 𝐶2 𝑐𝑜𝑠(𝑥) − 𝑠𝑒𝑛(𝑥) ln(cos(𝑥)) + 𝑥𝑐𝑜𝑠(𝑥)
Si 𝑦(0) = 1 ; 1 = 𝐶1 ;

Si 𝑦′(0) = −1 ; −1 = 𝐶2

𝑦 = cos(𝑥) − 𝑠𝑒𝑛(𝑥) + 𝑥𝑠𝑒𝑛(𝑥) + cos(𝑥) ln(cos(𝑥))
𝑦 = cos(𝑥) (1 + ln(cos(𝑥)) − 𝑠𝑒𝑛(𝑥)(1 − 𝑥)



Ejemplo.

Resuelva la siguiente ecuación diferencial de segundo orden, lineal,

con coeficientes constantes, no homogénea.
𝑑2 𝑦 𝑑𝑦 1
+3 𝑦 + 2𝑦 =
𝑑𝑥 2 𝑑𝑥 1+𝑒 𝑥

Solución.
𝑑2 𝑦 𝑑𝑦 1
𝑑𝑥 2
+ 3 𝑑𝑥 + 2𝑦 = 1+𝑒 𝑥 ;

𝑑2 𝑦 𝑑𝑦
Primero encontramos la solución de la homogénea, para 𝑑𝑥 2
+ 3 𝑑𝑥 + 2𝑦 = 0.

Utilizando la ecuación auxiliar 𝑚2 + 3𝑚 + 2 = 0; (𝑚 + 2)(𝑚 + 1) = 0, 𝑚1 = −2, 𝑚2 = −1

entonces la solución es 𝑦𝐻 = 𝐶1 e−2𝑥 + 𝐶2 𝑒 −𝑥

Para la solución particular consideramos que 𝑦𝑝 = 𝑢1 𝑦1 + 𝑢2 𝑦2 donde,
$9.49
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
jocelynmarcial30

Also available in package deal

Get to know the seller

Seller avatar
jocelynmarcial30 instituto politécnico nacional
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
4 year
Number of followers
0
Documents
36
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions