100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Case

Ejercicios resueltos de series de Fourier.

Rating
-
Sold
-
Pages
5
Grade
A+
Uploaded on
16-02-2021
Written in
2020/2021

Ejercicios resueltos de series de Fourier.

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Course

Document information

Uploaded on
February 16, 2021
Number of pages
5
Written in
2020/2021
Type
Case
Professor(s)
Espiritu
Grade
A+

Subjects

Content preview

Series de Fourier.

El producto interno es un número real el cual se denota por < 𝑓, 𝑔 >= 𝑓1 𝑔1 + 𝑓2 𝑔2 + 𝑓3 𝑔3 + ⋯ + 𝑓𝑛 𝑔𝑛 .
Si 𝑓1 y 𝑓2 son dos funciones escalares, definidas en un intervalo [𝑎; 𝑏], entonces:
𝑏
< 𝑓1 , 𝑓2 >= ∫𝑎 𝑓1 (𝑥)𝑓2 (𝑥)𝑑𝑥, es la definición de producto interno.

𝑏
Una función ortogonal es definida como < 𝑓1 , 𝑓2 >= 0, esto es ∫𝑎 𝑓1 (𝑥)𝑓2 (𝑥)𝑑𝑥 = 0.
Ejemplo Si 𝑓1 (𝑥) = 𝑥 4 y 𝑓2 (𝑥) = 𝑥 5 determine si las funciones son ortogonales en el intervalo [-2;2].
2
2 2 𝑥 10 210 (−2)10
< 𝑓1 , 𝑓2 >= ∫−2 𝑥 4 𝑥 5 𝑑𝑥 ; < 𝑓1 , 𝑓2 >= ∫−2 𝑥 9 𝑑𝑥; < 𝑓1 , 𝑓2 >= [ ] ; < 𝑓1 , 𝑓2 >= [ − ] =0
10 −2 10 10
Ejemplo Si 𝑓1 (𝑥) = 𝑥 2 y 𝑓2 (𝑥) = 𝑥 4 determine si las funciones son ortogonales en el intervalo [-2;2].
2
2 2 𝑥7 27 (−2)7 28
< 𝑓1 , 𝑓2 >= ∫−2 𝑥 2 𝑥 4 𝑑𝑥 ; < 𝑓1 , 𝑓2 >= ∫−2 𝑥 6 𝑑𝑥; < 𝑓1 , 𝑓2 >= [ ] ; < 𝑓1 , 𝑓2 >= [ − ] =
7 −2 7 7 7
Conjuntos ortogonales. Si 𝑎 = {𝑓0 , 𝑓1 , 𝑓3 (𝑥), … , 𝑓𝑛 (𝑥)} es ortogonal en el intervalo [𝑎; 𝑏]
𝑏
si < 𝑓𝑚 , 𝑓𝑛 >= ∫𝑎 𝑓𝑚 (𝑥)𝑓𝑛 (𝑥)𝑑𝑥 = 0;

Ejemplo Dado el conjunto 𝐵 = {1, cos(𝑥) , cos(2𝑥) , cos(3𝑥) , … cos(𝑚𝑥) , … , cos(𝑛𝑥)},
pruebe que es ortogonal en el intervalo [−𝜋; 𝜋]
Respuesta:

𝜋
a) para 𝑓1 (𝑥) = 1 y 𝑓𝑛 (𝑥) = cos (𝑛𝑥) entonces < 𝑓1 , 𝑓𝑛 >= ∫−𝜋(1)(cos (𝑛𝑥))𝑑𝑥;
1 1
< 𝑓1 , 𝑓𝑛 >= [𝑠𝑒𝑛(𝑛𝑥)]𝜋−𝜋 ; < 𝑓1 , 𝑓𝑛 >= [𝑠𝑒𝑛(𝑛𝜋) − 𝑠𝑒𝑛(−𝑛𝜋)] ;
𝑛 𝑛
nota: 𝑠𝑒𝑛(−𝜃) = −𝑠𝑒𝑛(𝜃)
1
< 𝑓1 , 𝑓𝑛 >= [2𝑠𝑒𝑛(𝑛𝜋)] como 𝑠𝑒𝑛(𝑛𝜋) = 0 ∴ < 𝑓1 , 𝑓𝑛 >= 0 son ortogonales.
𝑛

𝜋
b) para 𝑓1 (𝑥) = 1 y 𝑓𝑛 (𝑥) = sen(𝑛𝑥) entonces < 𝑓1 , 𝑓𝑛 >= ∫−𝜋(1)(sen (𝑛𝑥))𝑑𝑥;
−1 −1
< 𝑓1 , 𝑓𝑛 >= [𝑐𝑜𝑠(𝑛𝑥)]𝜋−𝜋 ; < 𝑓1 , 𝑓𝑛 >= [𝑐𝑜𝑠(𝑛𝜋) − 𝑐𝑜𝑠(−𝑛𝜋)]
𝑛 𝑛
nota: cos(−𝜃) = cos (𝜃)
−1
< 𝑓1 , 𝑓𝑛 >= [0] ∴ < 𝑓1 , 𝑓𝑛 >= 0 son ortogonales.
𝑛




c) Para 𝑚 ≠ 𝑛 𝑓𝑚 (𝑥) = cos (𝑚𝑥) y 𝑓𝑛 (𝑥) = cos (𝑛𝑥) entonces
𝜋
< 𝑓𝑚 , 𝑓𝑛 >= ∫−𝜋(cos (𝑚𝑥))(cos (𝑛𝑥))𝑑𝑥; empleando identidades trigonométricas.
𝜋 1
< 𝑓𝑚 , 𝑓𝑛 >= ∫−𝜋 (cos ((𝑚 + 𝑛)𝑥)) + (cos ((𝑚 − 𝑛)𝑥))𝑑𝑥
2
1
Nota: cos(𝐴𝑥) cos(𝐵𝑥) = 2 [𝑐𝑜𝑠((𝐴 + 𝐵)𝑥) + cos ((𝐴 − 𝐵)𝑥)]
1 𝜋 1 𝜋
< 𝑓𝑚 , 𝑓𝑛 >= 2(𝑚+𝑛) ∫−𝜋(𝑚 + 𝑛)cos ((𝑚 + 𝑛)𝑥) 𝑑𝑥 +2(𝑚−𝑛) ∫−𝜋(𝑚 − 𝑛) cos((𝑚 − 𝑛)𝑥) 𝑑𝑥
1 1
< 𝑓𝑚 , 𝑓𝑛 >= 𝑠𝑒𝑛((𝑚 + 𝑛)𝑥) + 𝑠𝑒𝑛((𝑚 − 𝑛)𝑥) ∴ < 𝑓𝑚 , 𝑓𝑛 >= 0 son ortogonales
2(𝑚+𝑛) 2(𝑚−𝑛)


d) Para 𝑚 ≠ 𝑛 𝑓𝑚 (𝑥) = sen (𝑚𝑥) y 𝑓𝑛 (𝑥) = sen (𝑛𝑥) entonces
𝜋
< 𝑓𝑚 , 𝑓𝑛 >= ∫−𝜋(sen(𝑚𝑥))(sen (𝑛𝑥))𝑑𝑥; empleando identidades trigonométricas.
𝜋 1
< 𝑓𝑚 , 𝑓𝑛 >= ∫−𝜋 2 (cos ((𝑚 + 𝑛)𝑥)) + (cos ((𝑚 − 𝑛)𝑥))𝑑𝑥
1
Nota: sen(𝐴𝑥) sen(𝐵𝑥) = 2 [𝑐𝑜𝑠((𝐴 − 𝐵)𝑥) − cos ((𝐴 + 𝐵)𝑥)]
1 𝜋 1 𝜋
< 𝑓𝑚 , 𝑓𝑛 >= 2(𝑚−𝑛) ∫−𝜋(𝑚 − 𝑛)cos ((𝑚 − 𝑛)𝑥) 𝑑𝑥 − 2(𝑚+𝑛) ∫−𝜋(𝑚 + 𝑛) cos((𝑚 + 𝑛)𝑥) 𝑑𝑥

, 1 1
< 𝑓𝑚 , 𝑓𝑛 >= 2(𝑚−𝑛) 𝑐𝑜𝑠((𝑚 − 𝑛)𝑥) − 2(𝑚+𝑛) 𝑐𝑜𝑠((𝑚 + 𝑛)𝑥) ∴ < 𝑓𝑚 , 𝑓𝑛 >= 0 son ortogonales

e) Para 𝑚 ≠ 𝑛 𝑓𝑚 (𝑥) = sen (𝑚𝑥) y 𝑓𝑛 (𝑥) = cos (𝑛𝑥) entonces
𝜋
< 𝑓𝑚 , 𝑓𝑛 >= ∫−𝜋(sen(𝑚𝑥))(cos (𝑛𝑥))𝑑𝑥; empleando identidades trigonométricas.
𝜋 1
< 𝑓𝑚 , 𝑓𝑛 >= ∫−𝜋 (cos ((𝑚 + 𝑛)𝑥)) + (cos ((𝑚 − 𝑛)𝑥))𝑑𝑥
2
1
Nota: sen(𝐴𝑥) cos(𝐵𝑥) = 2 [𝑠𝑒𝑛((𝐴 − 𝐵)𝑥) − sen ((𝐴 + 𝐵)𝑥)]
1 𝜋 1 𝜋
< 𝑓𝑚 , 𝑓𝑛 >= 2(𝑚−𝑛) ∫−𝜋(𝑚 − 𝑛)sen ((𝑚 − 𝑛)𝑥) 𝑑𝑥 − 2(𝑚+𝑛) ∫−𝜋(𝑚 + 𝑛) sen((𝑚 + 𝑛)𝑥) 𝑑𝑥
−1 𝜋 1
< 𝑓𝑚 , 𝑓𝑛 >= 2(𝑚−𝑛) [𝑐𝑜𝑠((𝑚 − 𝑛)𝑥)]−𝜋 + 2(𝑚+𝑛) [𝑐𝑜𝑠((𝑚 + 𝑛)𝑥)]𝜋−𝜋
−1 1
< 𝑓𝑚 , 𝑓𝑛 >= 2(𝑚−𝑛) (𝑐𝑜𝑠((𝑚 − 𝑛)𝜋 − cos (𝑚 − 𝑛)(−𝜋)) + 2(𝑚+𝑛) (𝑐𝑜𝑠((𝑚 + 𝑛)𝜋 − cos(𝑚 + 𝑛) (−𝜋))
Nota: cos(−𝜃) = cos (𝜃) ∴ < 𝑓𝑚 , 𝑓𝑛 >= 0 son

f) Para 𝑚 = 𝑛 𝑓𝑛 (𝑥) = cos (𝑛𝑥) y 𝑓𝑛 (𝑥) = cos (𝑛𝑥) entonces :
𝜋 1 𝜋
< 𝑓𝑛 , 𝑓𝑛 ≥ ∫−𝜋 𝑐𝑜𝑠 2 (𝑛𝑥)𝑑𝑥; < 𝑓𝑛 , 𝑓𝑛 >= ∫−𝜋(1 + cos(2𝑛𝑥))𝑑𝑥
2
1 𝜋 1 𝜋 1 1
< 𝑓𝑛 , 𝑓𝑛 >= 2 ∫−𝜋 𝑑𝑥 + 4𝑛 ∫−𝜋 2ncos (2𝑛𝑥)𝑑𝑥 ; < 𝑓𝑛 , 𝑓𝑛 >= 2 [𝑥]𝜋−𝜋 + 4𝑛 [𝑠𝑒𝑛(2𝑛𝑥)]𝜋−𝜋
1 1
< 𝑓𝑛 , 𝑓𝑛 >= 2 (𝜋 − (−𝜋)) + 4𝑛 (𝑠𝑒𝑛(2𝑛𝜋) − 𝑠𝑒𝑛(2𝑛(−𝜋))
1
< 𝑓𝑛 , 𝑓𝑛 >= 𝜋 + 𝑠𝑒𝑛(2𝑛𝜋) = 𝜋.
2𝑛


g) Para 𝑚 = 𝑛 𝑓𝑛 (𝑥) = sen (𝑛𝑥) y 𝑓𝑛 (𝑥) = sen (𝑛𝑥) entonces :
𝜋 1 𝜋
< 𝑓𝑛 , 𝑓𝑛 ≥ ∫−𝜋 𝑠𝑒𝑛2 (𝑛𝑥)𝑑𝑥; < 𝑓𝑛 , 𝑓𝑛 >= 2 ∫−𝜋(1 − cos(2𝑛𝑥))𝑑𝑥
1 𝜋 −1 𝜋 −1 1
< 𝑓𝑛 , 𝑓𝑛 >= ∫−𝜋 𝑑𝑥 + ∫−𝜋 −2n ∙ sen (2𝑛𝑥)𝑑𝑥 ; < 𝑓𝑛 , 𝑓𝑛 >= [𝑥]𝜋−𝜋 + [𝑐𝑜𝑠(2𝑛𝑥)]𝜋−𝜋
2 4𝑛 2 4𝑛
1 1
< 𝑓𝑛 , 𝑓𝑛 >= (𝜋 − (−𝜋)) + (𝑐𝑜𝑠(2𝑛𝜋) − 𝑐𝑜𝑠(2𝑛(−𝜋))
2 4𝑛
Nota: cos(−𝜃) = cos (𝜃)
1
< 𝑓𝑛 , 𝑓𝑛 >= 𝜋 + 4𝑛 (0) = 𝜋.



Si consideramos la sucesión de funciones {𝑓0 (𝑥), 𝑓1 (𝑥), 𝑓2 (𝑥), … , 𝑓𝑛 (𝑥)} es un
conjunto ortogonal, tal que entonces se puede desarrollar formalmente la función 𝑓,
como como una serie ortogonal: 𝑓(𝑥) = 𝐶0 𝑓0 + 𝐶1 𝑓1 + 𝐶2 𝑓2 + ⋯ + 𝐶𝑛 𝑓𝑛 , donde
𝐶0 , 𝐶1 , 𝐶2 , … + 𝐶𝑛 se encuentran utilizando el concepto del producto interno.

Fourier propone inicialmente la sucesión de funciones siguiente:
𝜋𝑥 2𝜋𝑥 3𝜋𝑥 𝑛𝜋𝑥 𝜋𝑥 2𝜋𝑥 3𝜋𝑥 𝑛𝜋𝑥
{1, cos ( 𝑝 ) , cos ( 𝑝
) , cos ( 𝑝 ) , … cos ( 𝑝 ) , … 𝑠𝑒𝑛 ( 𝑝 ) , 𝑠𝑒𝑛 ( 𝑝 ) , 𝑠𝑒𝑛 ( 𝑝 ) , … , 𝑠𝑒𝑛 ( 𝑝 )}
Para conformar una serie tal que
𝑎0 𝑛𝜋 𝑛𝜋
𝑓(𝑥) = 2
+ ∑∞ ∞
𝑛=1 𝑎𝑛 cos ( 𝑝 𝑥) + ∑𝑛=1 𝑏𝑛 𝑠𝑒𝑛( 𝑝 𝑥) de esta serie es necesario conocer los coeficientes

𝑎0 , 𝑎1 , 𝑎2 , … , 𝑎𝑛 y 𝑏1 , 𝑏2 , 𝑏3, … , 𝑏𝑛

El procedimiento para conocer la primera constante 𝑎0 es:
𝑎0 𝑛𝜋 𝑛𝜋
𝑓(𝑥) = 2
+ ∑∞
𝑛=1(𝑎𝑛 cos ( 𝑝 𝑥) + 𝑏𝑛 𝑠𝑒𝑛( 𝑝 𝑥))
𝑝 𝑝 𝑎0 𝑝 𝑛𝜋 𝑝 𝑛𝜋
∫−𝑝 𝑓(𝑥)𝑑𝑥 = ∫−𝑝 2
𝑑𝑥 + ∑∞
𝑛=1 ∫−𝑝 𝑎𝑛 cos ( 𝑝 𝑥)𝑑𝑥 + ∫−𝑝 𝑏𝑛 𝑠𝑒𝑛 ( 𝑝 𝑥) 𝑑𝑥

De acuerdo con los incisos a) y b) de las funciones ortogonales las integrales
𝑝 𝑛𝜋 𝑝 𝑛𝜋
∫−𝑝 𝑎𝑛 cos ( 𝑝 𝑥)𝑑𝑥 = 0 y ∫−𝑝 𝑏𝑛 𝑠𝑒𝑛 ( 𝑝 𝑥) 𝑑𝑥 = 0,
$9.49
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
jocelynmarcial30

Also available in package deal

Get to know the seller

Seller avatar
jocelynmarcial30 instituto politécnico nacional
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
4 year
Number of followers
0
Documents
36
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions