100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Natuurkunde met Elementen van Wiskunde 1 (K01B4A) op basis van Physics for Scientists & Engineers with Modern Physics, ISBN: 9781292020761

Rating
3.0
(1)
Sold
5
Pages
45
Uploaded on
15-02-2021
Written in
2020/2021

Uitstekende samenvatting op basis van alle slides gebruikt tijdens de colleges en het handboek Physics for Scientists & Engineers with Modern Physics. Bevat alle theoretische concept-testen die tijdens de colleges behandeld werden, alle formules die je nodig hebt om de oefeningen van de oefenzittingen te verwerken & nog extra fotos, schema's en hulpmiddelen om te slagen voor het examen! Ps: deze samenvatting bevat nog andere formules die je nodig hebt om de oefeningen op te lossen en die NIET in het formularium staan ;) Veel succes!

Show more Read less
Institution
Course













Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
Hoofdstuk 2-5, 7-11, 13-14, 16-19, 32-33
Uploaded on
February 15, 2021
Number of pages
45
Written in
2020/2021
Type
Summary

Subjects

Content preview

Samenvatting Natuurkunde (Prof Wagner)
WISKUNDIGE BEGRIPPEN & TECHNIEKEN
- Basisfuncties
Veeltermfuncties:

Functie y = 3x + 5 met 3 = richtingscoëfficiënt
dus 3 = tan(θ )

Goniometrische functies:

Boog( A−B)
Hoek α (¿ radialen)=
Straal r (M −B of M − A)

360° = 2πrad

Y = sin(α) X = cos(α)

sin(x) functie:

 y = 0 -> 0 rad
 y = 1 -> π/2 rad
 y = 0 -> π rad
 y = -1 -> 3π/2 rad

cos(x) functie:

 y = 1 -> 0 rad
 y = 0 -> π/2 rad
 y = -1 -> π rad
 y = 0 -> 3π/2 rad

Exponentiële & Logaritmische functies:
x
F ( x )=a

F ( x )=a log x



- Limieten
lim ( f ( x ) + g ( x ) ) =¿ lim f ( x ) +¿ lim g ( x ) ¿ ¿
x→ a x→ a x →a


lim ( f ( x ) ∙ g ( x ) )=¿ lim f ( x ) ∙ lim g ( x ) ¿
x→ a x→ a x→ a


lim f ( x )
f (x)
lim
x→ a ( ) g(x)
=¿
x →a
lim g ( x ) ¿
lim g ( x ) x→ a
x→a

, - Afgeleiden
Afgeleide in een punt:

∆ y y ( x +∆ x )− y ( x )
=
∆x ∆x

dy = y ' dx= ( dydx ) dx
Rekenregels afgeleiden:
d
( k ) =0
dx
d k
( x )=k x k−1
dx
d d d
( yz )=z ( y )+ y ( z )
dx dx dx
d d d
( yz )=z ( y )+ y ( z )
dx dx dx
d
(sin( x))=cos ⁡( x )
dx
d
(cos( x ))=−sin( x )
dx
d kx
( e )=k e kx
dx
d 1
( ln( x) )=
dx x

x’’(t) = v’(t) = a(t)



Met hoeveel % neemt V van een bol toe als R toeneemt met 1%:
4
V = π R3
3
∆ V dV
≈ =4 π R2 ↔ ∆ V =4 π R2 ∙ ∆ R
∆ R dR
2
∆V 4 π R ∙∆ R 3∙∆R
= =
V 4 3 R
πR
3

,∆R ∆V 3∙∆ R
=1 % dus = =3 %
R V R




- Integralen

∫ k u ( x ) dx=k ∫ u ( x ) dx
k +1
∫ ( x k ) dx= x k+1
+C

1
∫ x dx=ln ( x ) +C
1
∫ ( e kx) dx= k e kx +C
∫ ln ( x ) dx=x ln (x )−x+ C
∫ sin ( x ) dx=−cos ( x ) +C
∫ cos ( x ) dx=sin ( x ) +C
Partiële integratie:

∫ f ( x ) ∙ g ' ( x ) dx=f ( x ) ∙ g ( x )−∫ g ( x ) ∙ f ( x ) dx
b a

∫ f ( x ) dx=−∫ f ( x ) dx
a b


Gemiddelde snelheid tussen a en b (in seconden):
b
1
¿ v(t)>¿ ∫ v ( t ) dt
b−a a



- Differentiaalvergelijkingen
Differentiaalvergelijking = vergelijking waar afgeleiden in voorkomen

Eerste orde differentiaalvergelijking = vergelijking met een afgeleide van
de eerste orde

Tweede orde differentiaalvergelijking = vergelijking met een afgeleide van
de tweede orde

Homogene differentiaalvergelijking: f(x) = 0

Niet-homogene differentiaalvergelijking: f(x) ≠ 0

,Lineaire differentiaalvergelijking bevat geen machten van afgeleiden



Stappen van differentiaalvergelijkingen:

 Scheiden van veranderlijken
 Integratie
 E-macht berekenen
 Oplossen naar x



- Eenheden & Dimensies
1mL = 1 (cm)^3 1L = 1 (dm)^3 1000L = 1 m^3



- Assenstelsel
Vergelijking cirkel: (x2 – x1)² + (y2 – y1)² =


 Straal cirkel = R
 Coördinaten middelpunt cirkel (x1,y1)

Vergelijking vlak: ax + by + cz = d

 Vlak xz heeft y = 0
 Vlak yz heeft x = 0
 Vlak xy heeft z = 0

Afstand van P(x1,y1,z1) – Q(x2,y2,z2) in de ruimte =
2 2 2
√ ( x 2−x 1 ) +( y 2− y 1 ) ( z 2−z 1 )

- Vectoren
a=√ x + y (vlak) of √ x 2+ y 2 + z 2 (ruimte)
2 2



⃗ ( ax , a y , a z ) ⋅ ( b x , b y , b z )=a x ⋅ b x + a y ⋅ b y + az ⋅ b z
a⃗ ⋅ b=


a⃗ ⋅ b=a ⋅ b ⋅ cos(θ)

, ax bx
ay


()( )(
by a y ⋅b z−a z ⋅b y
a⃗ × ⃗b= a z × bz = a z ⋅ b x −a x ⋅ b z
ax
ay
bx
by
a x ⋅b y −a y ⋅b x )
a⃗ × ⃗b=¿ vector met grootte a ⋅ b ⋅sin ( θ ) -> staat loodrecht op het vlak
gevormd door a⃗ en b⃗



- Logaritmische Schalen
log ( xy)=log ( x ) + log ( y )

x
log ( )=log ( x )−log ( y )
y

y
log ( x )= y log ( x )



MECHANICA
Studie van de beweging:

 Kinematica: hoe bewegen voorwerpen?
 Dynamica: waarom bewegen voorwerpen?



- Lineaire Beweging
Δv Δx v 0 +v Δx
a= v= v= =
Δt Δt 2 Δt

Als je een bal recht omhoog gooit:

 Is de versnelling in elk punt hetzelfde
 Is de snelheid in het hoogste punt 0
 Is de versnelling in het hoogste punt verschillend van 0

Persoon A gooit een bal naar beneden en persoon B laat een bal
tegelijkertijd gewoon vallen -> de versnelling net na het loslaten van de
bal is bij beide A en B hetzelfde

Persoon A gooit een bal naar beneden en persoon B gooit een bal naar
boven, beide met beginsnelheid v0 -> beide ballen raken de grond met
dezelfde snelheid v

, Je gooit een steen verticaal van een berg, wanneer de steen 4m ver naar
beneden is gooi je nog een steen naar beneden -> tijdens de val vergroot
de afstand tussen de 2 stenen



- Beweging in 2 of 3 Dimensies (vlak of ruimte)
v x =v ⋅ cos θ v y =v ⋅ sin θ v y =v x ⋅ tanθ v=√ v 2x + v 2y

Bal 1 valt verticaal naar beneden en bal 2 wordt horizontaal afgeschoten -
> beide ballen komen op hetzelfde moment op de grond aan

Een balletje wordt verticaal naar boven afgeschoten uit een horizontaal
bewegende kar -> de bal belandt net achter de kar, ook al rolt de kar van
een berg

- Wetten van Newton
Kracht = datgene wat de snelheid van een voorwerp doet veranderen

1ste wet van Newton of traagheidswet:

- Een voorwerp zonder krachten, voert een eenparige beweging uit
met v = constant
- Als de resulterende kracht op een object 0 is, dan blijft een object in
rust
- Als een object een constante snelheid heeft, dan blijft dit bewegen

Mensen op de draaiende schijf zien een ‘kromme baan’ door de Coriolis-
kracht of schijnkracht

F a⃗ : Hoe groter de kracht, hoe groter de versnelling


1
a: Hoe groter de massa, hoe kleiner de versnelling
m

2de wet van Newton of onafhankelijkheidsbeginsel: Σ⃗
F =m⋅ a⃗

m1 ⋅ m2 N ⋅m2
Gravitatiekracht: F G=G ⋅
−11
met G = 6,67 ∙ 10
r2 kg
2



m N
F G=m ⋅ ⃗g
⃗ met g = 9,81 of op aarde
s
2
kg

Reviews from verified buyers

Showing all reviews
3 year ago

3.0

1 reviews

5
0
4
0
3
1
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Bmw99 Katholieke Universiteit Leuven
Follow You need to be logged in order to follow users or courses
Sold
19
Member since
4 year
Number of followers
18
Documents
4
Last sold
7 months ago

3.3

4 reviews

5
1
4
0
3
2
2
1
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions