100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Other

Samenvatting Computersessies Onderzoeksmethodes In Finance

Rating
-
Sold
6
Pages
132
Uploaded on
15-02-2021
Written in
2020/2021

Samenvatting van de computersessies met uitleg van begrippen, werkwijze, formules, interpretaties van alle oefeningen en afbeeldingen van de regressie output prof: Koen Inghelbrecht Vak: Onderzoeksmethoden In Finance

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Uploaded on
February 15, 2021
Number of pages
132
Written in
2020/2021
Type
Other
Person
Unknown

Subjects

Content preview

Inhoud
Computersessie 1: Introduction .................................................................................................... 4
1 Inspect Excel file .......................................................................................................................... 4
2 Import data.................................................................................................................................. 4
3 Transform data ............................................................................................................................ 4
4 Plot Data ...................................................................................................................................... 5
4.1 Time series plot ................................................................................................................... 5
4.2 XY-plot ................................................................................................................................. 6
4.3 Histogram ............................................................................................................................ 6
5 Normality test.............................................................................................................................. 6
6 Descriptive statistics .................................................................................................................... 7
6.1 Mean and variance .............................................................................................................. 7
6.2 Correlations ......................................................................................................................... 8
7 Exercise: “Equity” ........................................................................................................................ 9
Computersessie 2: Classical Linear Regression Model (CLRM) ...................................................... 13
8 Simple regression ...................................................................................................................... 13
8.1 Example: CAPM ................................................................................................................. 13
8.2 OLS-regressie ..................................................................................................................... 13
8.3 Residuals ............................................................................................................................ 15
8.4 R²: goodness of fit strategies ............................................................................................ 16
8.5 Statistical tests................................................................................................................... 17
9 Exercise: “Equity” ...................................................................................................................... 23
10 Multiple regression.................................................................................................................... 31
10.1 OLS estimation of multiple regression .............................................................................. 31
10.2 Residuals ............................................................................................................................ 33
10.3 Detection of outliers.......................................................................................................... 33
10.4 Dealing with outliers.......................................................................................................... 35
11 Regression with dummy variables............................................................................................. 37
Computersessie 3: CLRM Assumptions and Diagnostic Tests ........................................................ 39
12 Pitfalls in regression models using cross-sectional data ........................................................... 39
12.1 Omitted variable basis ....................................................................................................... 39
12.2 Multicollinearity ................................................................................................................ 41
1

,12.3 Omitted variable bias vs. multicollinearity ........................................................................ 43
12.4 Heteroskedasticity ............................................................................................................. 43
13 Working with time series data .................................................................................................. 52
13.1 Example: “Microsoft” ........................................................................................................ 52
13.2 Simple regression model ................................................................................................... 52
13.3 Outliers .............................................................................................................................. 54
14 Pitfalls using time series variables ............................................................................................. 57
14.1 Omitted variable bias ........................................................................................................ 57
14.2 Multicollineariteit .............................................................................................................. 59
14.3 Heteroskedasticiteit .......................................................................................................... 60
15 Additional pitfall: Residual autocorrelation .............................................................................. 63
15.1 Detection ........................................................................................................................... 63
15.2 Example: “badnews” ......................................................................................................... 68
16 Exercises .................................................................................................................................... 75
16.1 Exercise: “Wage discrimination” ....................................................................................... 75
16.2 Exercise: “Earnings” ........................................................................................................... 82
16.3 Exercise: “Philips curve” .................................................................................................... 90
Computersessie 5: Non-Stationarity and Unit Root Testing .......................................................... 95
17 Detecting nonstationary time series ......................................................................................... 95
17.1 Example: “Stock prices on NYSE” ...................................................................................... 95
17.2 Time series plot ................................................................................................................. 95
17.3 Autoregressive model........................................................................................................ 96
17.4 Unit root test ..................................................................................................................... 97
18 Exercise: “Interestrates”.......................................................................................................... 102
Computersessie 7: Models for Panel Data ..................................................................................107
19 Panel data ................................................................................................................................ 107
19.1 Example: “Airline” ........................................................................................................... 107
20 Panel data models ................................................................................................................... 109
20.1 Steps to follow ................................................................................................................. 109
20.2 Pooled OLS: Estimation ................................................................................................... 109
20.3 Individual effects models................................................................................................. 111
21 Exercise: “Panel” ..................................................................................................................... 118
Computersessie 8: Limited Dependent Variable Models .............................................................122
2

,22 Limited dependent variable models (LVD) .............................................................................. 122
22.1 Example: “Split ratings” ................................................................................................... 122
22.2 Linear probability model ................................................................................................. 123
22.3 Logit and probit models .................................................................................................. 125
23 Exercise: “Default”................................................................................................................... 129




3

, Computersessie 1: Introduction
1 Inspect Excel file
• Kijken hoe Excel file is opgesteld
• moeten er transformaties gedaan worden
• wat is eerste kolom/rij
• …


2 Import data
Toolbar: File/Open Data/User File

Save:
Toolbar: File/Save Data

Goed opletten welk type financiële data:
• time series (= var. varieert doorheen tijd)
• cross-sectional (= data over bv. verschillende bedrijven)
• panel (= data doorheen tijd, over verschillende bedrijven)


3 Transform data
(indien nodig!)


Generate new variable:
Toolbar: Add/Define new variable...
Compute return based on total return index (TRI) and define it as R
R = (TRI-TRI(-1))/TRI(-1) (= rendement fortis)

Exercise: Compute market return based on BEL-20 total return index (BEL20) and define it as RM:
RM= (BEL20 -BEL20(-1))/BEL20 (-1)(= rendement markt)

Exercise: Compute return based on price index (PI) and define it as R2.
R2= (PI-PI(-1))/PI(-1) (=rendement prijsindex (PI))

Build in options: log, squares, etc
Select variable(s),
Toolbar: Add/Logs of selected variables
Toolbar: Add/Squares of selected variables




4

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
ZiziCoincoin Universiteit Gent
Follow You need to be logged in order to follow users or courses
Sold
14
Member since
4 year
Number of followers
13
Documents
4
Last sold
1 year ago

4.0

1 reviews

5
0
4
1
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions