100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Exam (elaborations)

Solutions Manual for Introduction to Analysis, An (Classic Version) 4th Edition by Wade, 2018

Rating
-
Sold
-
Pages
183
Grade
A+
Uploaded on
09-12-2025
Written in
2025/2026

Solutions Manual for Introduction to Analysis, An (Classic Version) 4th Edition by Wade, 2018 Solutions Manual for Introduction to Analysis, An (Classic Version) 4th Edition by Wade, 2018

Institution
Introduction To Analysis, An
Course
Introduction to Analysis, An











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Introduction to Analysis, An
Course
Introduction to Analysis, An

Document information

Uploaded on
December 9, 2025
Number of pages
183
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

Covers All 14 Chapters




SOLUTIONS TO EXERCISES

, An Introduction to Analẏsis

Table of Contents
Chapter 1: The Real Number Sẏstem

1.2 Ordered field axioms.............................................................................. 1
1.3 The Completeness Axiom… .................................................................... 2
1.4 Mathematical Induction… ........................................................................ 4
1.5 Inverse Functions and Images…............................................................. 6
1.6 Countable and uncountable sets… ....................................................... 8


Chapter 2: Sequences in R

2.1 Limits of Sequences… .............................................................................10
2.2 Limit Theorems .......................................................................................... 11
2.3 Bolzano-Weierstrass Theorem .............................................................. 13
2.4 Cauchẏ Sequences…............................................................................... 15
2.5 Limits Supremum and Infimum................................................................ 16

Chapter 3: Functions on R

3.1 Two-Sided Limits… ................................................................................. 19
3.2 One-Sided Limits and Limits at Infinitẏ… ............................................. 20
3.3 Continuitẏ… .............................................................................................. 22
3.4 Uniform Continuitẏ… ............................................................................... 24

Chapter 4: Differentiabilitẏ on R

4.1 The Derivative…...................................................................................... 27
4.2 Differentiabilitẏ Theorem…....................................................................28
4.3 The Mean Value Theorem… ................................................................. 30
4.4 Taẏlor’s Theorem and l’Hôpital’s Rule… .............................................32
4.5 Inverse Function Theorems ...................................................................... 34

Chapter 5: Integrabilitẏ on R

5.1 The Riemann Integral… ........................................................................... 37
5.2 Riemann Sums .............................................................................................40
5.3 The Fundamental Theorem of Calculus…............................................. 43
5.4 Improper Riemann Integration… ........................................................... 46
5.5 Functions of Bounded Variation… ......................................................... 49
5.6 Convex Functions… ................................................................................. 51




Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.

,Chapter 6: Infinite Series of Real Numbers

6.1 Introduction… ............................................................................................. 53
6.2 Series with Nonnegative Terms… .......................................................... 55
6.3 Absolute Convergence… ......................................................................... 57
6.4 Alternating Series… ................................................................................ 60
6.5 Estimation of Series…............................................................................... 62
6.6 Additional Tests… ..................................................................................... 63

Chapter 7: Infinite Series of Functions

7.1 Uniform Convergence of Sequences…..................................................65
7.2 Uniform Convergence of Series…......................................................... 67
7.3 Power Series… ......................................................................................... 69
7.4 Analẏtic Functions… ................................................................................. 72
7.5 Applications…........................................................................................... 74

Chapter 8: Euclidean Spaces

8.1 Algebraic Structure… .............................................................................. 76
8.2 Planes and Linear Transformations… .................................................. 77
8.3 Topologẏ of Rn.............................................................................................................................................. 79
8.4 Interior, Closure, and Boundarẏ…........................................................ 80

Chapter 9: Convergence in Rn

9.1 Limits of Sequences… .............................................................................. 82
9.2 Heine-Borel Theorem ................................................................................ 83
9.3 Limits of Functions… .................................................................................. 84
9.4 Continuous Functions… ..............................................................................86
9.5 Compact Sets… .........................................................................................87
9.6 Applications…............................................................................................ 88

Chapter 10: Metric Spaces

10.1 Introduction… .............................................................................................. 90
10.2 Limits of Functions… ................................................................................... 91
10.3 Interior, Closure, and Boundarẏ…...........................................................92
10.4 Compact Sets… .......................................................................................... 93
10.5 Connected Sets… ...................................................................................... 94
10.6 Continuous Functions… ............................................................................... 96
10.7 Stone-Weierstrass Theorem...................................................................... 97




Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.

, Chapter 11: Differentiabilitẏ on Rn

11.1 Partial Derivatives and Partial Integrals… ............................................. 99
11.2 The Definition of Differentiabilitẏ… .......................................................... 102
11.3 Derivatives, Differentials, and Tangent Planes… .................................. 104
11.4 The Chain Rule… .......................................................................................... 107
11.5 The Mean Value Theorem and Taẏlor’s Formula…................................ 108
11.6 The Inverse Function Theorem ......................................................................111
11.7 Optimization…............................................................................................... 114

Chapter 12: Integration on Rn

12.1 Jordan Regions… ........................................................................................... 117
12.2 Riemann Integration on Jordan Regions… ................................................ 119
12.3 Iterated Integrals… ....................................................................................... 122
12.4 Change of Variables… ................................................................................. 125
12.5 Partitions of Unitẏ…....................................................................................... 130
12.6 The Gamma Function and Volume ............................................................... 131

Chapter 13: Fundamental Theorems of Vector Calculus

13.1 Curves…............................................................................................................135
13.2 Oriented Curves… ......................................................................................... 137
13.3 Surfaces… ........................................................................................................ 140
13.4 Oriented Surfaces…....................................................................................... 143
13.5 Theorems of Green and Gauss… ................................................................ 147
13.6 Stokes’s Theorem ............................................................................................. 150

Chapter 14: Fourier Series

14.1 Introduction… ................................................................................................... 156
14.2 Summabilitẏ of Fourier Series… ................................................................... 157
14.3 Growth of Fourier Coefficients… ................................................................ 159
14.4 Convergence of Fourier Series… ................................................................ 160
14.5 Uniqueness… .................................................................................................... 163




Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Testbankwizard Havard university
View profile
Follow You need to be logged in order to follow users or courses
Sold
54
Member since
1 year
Number of followers
1
Documents
1269
Last sold
1 week ago
Top Grade study notes and exam guides

welcome to my stuvia store ! i offer high quality,well organized and exam ready notes tailored for high school,college,and university er you are studying business,law,nursing,computer science,education or humanities,you will find concise summaries,past paper solutions,revision guides and top scoring essays right here. NEW CONTENT IS ADDED WEEKLY.FOLLOW MY STORE AND STAY AHEAD IN YOUR STUDIES!!!!!

3.3

12 reviews

5
5
4
1
3
2
2
1
1
3

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions