100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Solution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill

Rating
-
Sold
-
Pages
593
Grade
A+
Uploaded on
08-12-2025
Written in
2025/2026

This solutions manual provides comprehensive, step-by-step solutions for all exercises in Chapters 1-9 of the 12th Edition textbook, covering analytical, qualitative, and quantitative approaches to differential equations and their real-world implications. It serves as a study aid for students and an instructional tool for educators.

Show more Read less
Institution
SM+TB
Course
SM+TB











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
SM+TB
Course
SM+TB

Document information

Uploaded on
December 8, 2025
Number of pages
593
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Content preview

A First Course in Differential
Equations with Modeling
Applications, 12th Edition by
Dennis G. Zill




Complete Chapter Solutions Manual are
included (Ch 1 to 9)




** Immediate Download
** Swift Response
** All Chapters included

,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations




Solution and Answer Guide
ZILL, DIFFERENTIALEQUATIONSWITHMODELINGAPPLICATIONS 2024, 9780357760192; CHAPTER
#1: INTRODUCTION TO DIFFERENTIAL EQUATIONS


TABLE OF CONTENTS
End of Section Solutions .................................................................................................................................... 1
Exercises 1.1 ................................................................................................................................................ 1
Exercises 1.2 .............................................................................................................................................. 14
Exercises 1.3 .............................................................................................................................................. 22
Chapter 1 in Review Solutions......................................................................................................................... 30




END OF SECTION SOLUTIONS
EXERCISES 1.1
1. Second order; linear
2. Third order; nonlinear because of (dy/dx)4
3. Fourth order; linear
4. Second order; nonlinear because of cos(r + u)

5. Second order; nonlinear because of (dy/dx)2 or 1 + (dy/dx)2
6. Second order; nonlinear because of R2
7. Third order; linear
8. Second order; nonlinear because of x˙ 2
9. First order; nonlinear because of sin (dy/dx)
10. First order; linear
11. Writing the differential equation in the form x(dy/dx) + y2 = 1, we see that it is nonlinear in y because of
y2. However, writing it in the form (y2 — 1)(dx/dy) + x = 0, we see that it is linear in x.
12. Writing the differential equation in the form u(dv/du) + (1 + u)v = ueu we see that it is linear in v.
However, writing it in the form (v + uv — ueu)(du/dv) + u = 0, we see that it is nonlinear in u.
13. From y = e− x/2
we obtain yj = — 1 e− x/2
. Then 2yj + y = —e− x/2
+ e− x/2 = 0.
2




1

,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations


66
14. From y = — e—20t we obtain dy/dt = 24e−20t , so that
5 5
dy + 20y = 24e−20t 6 6 −20t
+ 20 — e = 24.
dt 5 5

15. From y = e3x cos 2x we obtain yj = 3e3x cos 2x—2e3x sin 2x and yjj = 5e3x cos 2x—12e3x sin 2x, so that yjj
— 6yj + 13y = 0.
j
16. From y = — cos x ln(sec x + tan x) we obtain y = —1 + sin x ln(sec x + tan x) and
jj jj
y = tan x + cos x ln(sec x + tan x). Then y + y = tan x.
17. The domain of the function, found by solving x+2 ≥ 0, is [—2, ∞). From yj = 1+2(x+2)−1/2
we have
j 1/2−
(y —x)y = (y — x)[1 + (2(x + 2) ]

= y — x + 2(y —x)(x + 2)−1/2

= y — x + 2[x + 4(x + 2)1/2 —x](x + 2)−1/2

= y — x + 8(x + 2)1/2(x + 2)−1/2 = y — x + 8.

An interval of definition for the solution of the differential equation is (—2, ∞) because yj is not defined at x
= —2.
18. Since tan x is not defined for x = π/2 + nπ, n an integer, the domain of y = 5 tan 5x is
{x 5x /= π/2 + nπ}
or {x x /= π/10 + nπ/5}. From y j= 25 sec 25x we have

yj = 25(1 + tan2 5x) = 25 + 25 tan2 5x = 25 + y2.

An interval of definition for the solution of the differential equation is (—π/10, π/10). An- other interval is
(π/10, 3π/10), and so on.
19. The domain of the function is {x 4 — x2 /= 0} or {x x /= —2 or x /= 2}. From yj =
2x/(4 — x2)2 we have
1 2
= 2xy2.
yj = 2x
4 —x2
An interval of definition for the solution of the differential equation is (—2, 2). Other inter- vals are (—∞,
—2) and (2, ∞).

20. The function is y = 1/ 1 — sin x , whose domain is obtained from 1 — sin x /= 0 or sin x /= 1.
Thus, the domain is {x x /= π/2 + 2nπ}. From y j= — (11 — sin x) −3/2 (— cos x) we have
2

2yj = (1 — sin x)−3/2 cos x = [(1 — sin x)−1/2]3 cos x = y3 cos x.

An interval of definition for the solution of the differential equation is (π/2, 5π/2). Another one is (5π/2,
9π/2), and so on.



2

, Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations




21. Writing ln(2X — 1) — ln(X — 1) = t and differentiating x

implicitly we obtain 4


— =1 2
2X — 1 dt X — 1 dt

2 1 dX –4 –2 2 4
t
— =1
2X — 1 X —1 dt
–2


–4
dX
= —(2X — 1)(X — 1) = (X — 1)(1 — 2X).
dt
Exponentiating both sides of the implicit solution we obtain

2X — 1
= et
X—1
2X — 1 = Xet — et

(et — 1) = (et — 2)X
et 1
X= .
et — 2
Solving et — 2 = 0 we get t = ln 2. Thus, the solution is defined on (—∞, ln 2) or on (ln 2, ∞). The graph of
the solution defined on (—∞, ln 2) is dashed, and the graph of the solution defined on (ln 2, ∞) is solid.

22. Implicitly differentiating the solution, we obtain y

2 dy dy 4

—2x — 4xy + 2y =0
dx dx 2
—x2 dy — 2xy dx + y dy = 0
x
2xy dx + (x2 — y)dy = 0. –4 –2 2 4

Using the quadratic formula to solve y2 — 2x2y — 1 = 0 –2
√ √
for y, we get y = 2x2 ± 4x4 + 4 /2 = x2 ± x4 + 1 .
√ –4
Thus, two explicit solutions are y1 = x2 + x4 + 1 and

y2 = x2 — x4 + 1 . Both solutions are defined on (—∞, ∞).
The graph of y1(x) is solid and the graph of y2 is dashed.




3

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
YourBestAcademics Oxford University
View profile
Follow You need to be logged in order to follow users or courses
Sold
34
Member since
10 months
Number of followers
4
Documents
4848
Last sold
1 week ago
A+ Your Best Academics

Thank you for visiting this page, here you will find all sort of documents, package deals and flashcards offered by Learn logic.

3.0

2 reviews

5
1
4
0
3
0
2
0
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions