100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Exam (elaborations)

Linear Algebra – Complete Solutions Manual by Jim Hefferon (Exercises & Step-by-Step Answers)

Rating
-
Sold
-
Pages
411
Grade
A+
Uploaded on
08-12-2025
Written in
2025/2026

This document contains the full set of worked solutions accompanying Jim Hefferon’s Linear Algebra textbook. It covers all chapters, including linear systems, vector spaces, linear transformations, determinants, similarity, eigenvalues, and the Jordan form. Each exercise is solved with clear intermediate steps, row-reductions, explanations, and reasoning. The material is comprehensive and designed to support exam preparation, homework verification, and deeper conceptual understanding.

Show more Read less
Institution
Linear Algebra
Course
Linear Algebra

Content preview

Answers to Exercises


Linear Algebra
Jim Hefferon




¡1¢
3


¡2¢
1




1 2
¯3 1¯
¡1¢
x1 ·
3




¡2¢
1




¯x · 1 2¯
¯x · 3 1¯




¯6 2¯
¯8 1¯

,Contents
Chapter One: Linear Systems 4
Subsection One.I.1: Gauss’ Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Subsection One.I.2: Describing the Solution Set ............................................................................. 10
Subsection One.I.3: General = Particular + Homogeneous ......................................................... 14
Subsection One.II.1: Vectors in Space.............................................................................................. 17
Subsection One.II.2: Length and Angle Measures .......................................................................... 20
Subsection One.III.1: Gauss-Jordan Reduction ............................................................................... 25
Subsection One.III.2: Row Equivalence ........................................................................................... 27
Topic: Computer Algebra Systems ................................................................................................... 31
Topic: Input-Output Analysis ........................................................................................................... 33
Topic: Accuracy of Computations ..................................................................................................... 33
Topic: Analyzing Networks ............................................................................................................... 34

Chapter Two: Vector Spaces 36
Subsection Two.I.1: Definition and Examples ................................................................................. 37
Subsection Two.I.2: Subspaces and Spanning Sets ......................................................................... 40
Subsection Two.II.1: Definition and Examples................................................................................ 46
Subsection Two.III.1: Basis ............................................................................................................... 53
Subsection Two.III.2: Dimension ...................................................................................................... 58
Subsection Two.III.3: Vector Spaces and Linear Systems ............................................................. 61
Subsection Two.III.4: Combining Subspaces................................................................................... 66
Topic: Fields ........................................................................................................................................ 69
Topic: Crystals..................................................................................................................................... 70
Topic: Dimensional Analysis .............................................................................................................. 71

Chapter Three: Maps Between Spaces 73
Subsection Three.I.1: Definition and Examples............................................................................... 75
Subsection Three.I.2: Dimension Characterizes Isomorphism ...................................................... 83
Subsection Three.II.1: Definition ...................................................................................................... 85
Subsection Three.II.2: Rangespace and Nullspace .......................................................................... 90
Subsection Three.III.1: Representing Linear Maps with Matrices ................................................ 95
Subsection Three.III.2: Any Matrix Represents a Linear Map.................................................... 103
Subsection Three.IV.1: Sums and Scalar Products ....................................................................... 107
Subsection Three.IV.2: Matrix Multiplication ............................................................................... 108
Subsection Three.IV.3: Mechanics of Matrix Multiplication ........................................................ 112
Subsection Three.IV.4: Inverses ..................................................................................................... 116
Subsection Three.V.1: Changing Representations of Vectors ...................................................... 121
Subsection Three.V.2: Changing Map Representations ............................................................... 124
Subsection Three.VI.1: Orthogonal Projection Into a Line ......................................................... 128
Subsection Three.VI.2: Gram-Schmidt Orthogonalization ........................................................... 131
Subsection Three.VI.3: Projection Into a Subspace ..................................................................... 137
Topic: Line of Best Fit...................................................................................................................... 143
Topic: Geometry of Linear Maps .................................................................................................... 147
Topic: Markov Chains....................................................................................................................... 150
Topic: Orthonormal Matrices .......................................................................................................... 157

Chapter Four: Determinants 158
Subsection Four.I.1: Exploration ..................................................................................................... 159
Subsection Four.I.2: Properties of Determinants .......................................................................... 161
Subsection Four.I.3: The Permutation Expansion ........................................................................ 164
Subsection Four.I.4: Determinants Exist ........................................................................................ 166
Subsection Four.II.1: Determinants as Size Functions ................................................................. 168
Subsection Four.III.1: Laplace’s Expansion ................................................................................... 171

, Topic: Cramer’s Rule........................................................................................................................ 174
4 Linear Algebra, by Hefferon
Topic: Speed of Calculating Determinants .................................................................................... 175
Topic: Projective Geometry ............................................................................................................. 176

Chapter Five: Similarity 178
Subsection Five.II.1: Definition and Examples .............................................................................. 179
Subsection Five.II.2: Diagonalizability............................................................................................ 182
Subsection Five.II.3: Eigenvalues and Eigenvectors ..................................................................... 186
Subsection Five.III.1: Self-Composition ......................................................................................... 190
Subsection Five.III.2: Strings .......................................................................................................... 192
Subsection Five.IV.1: Polynomials of Maps and Matrices ........................................................... 196
Subsection Five.IV.2: Jordan Canonical Form .............................................................................. 203
Topic: Method of Powers ................................................................................................................ 210
Topic: Stable Populations ................................................................................................................ 210
Topic: Linear Recurrences ............................................................................................................... 210

, Chapter One: Linear Systems


Subsection One.I.1: Gauss’ Method

One.I.1.16 Gauss’ method can be performed in different ways, so these simply exhibit one possible
way to get the answer.
(a) Gauss’ method
−(1/2)ρ1+ρ2 2x + 3y = 7
—→
— (5/2)y = —15/2
gives that the solution is y = 3 and x = 2.
(b) Gauss’ method here
x — z=0 x — z=0
−3ρ1+ρ2 −ρ2+ρ3
—→ y + 3z = 1 —→ y + 3z = 1
ρ1+ρ3
y =4 —3z = 3
gives x = —1, y = 4, and z = —1.
One.I.1.17 (a) Gaussian reduction
−(1/2)ρ1+ρ2 2x + 2y = 5
—→
—5y = —5/2
shows that y = 1/2 and x = 2 is the unique solution.
(b) Gauss’ method
ρ1+ρ2 —x + y = 1
—→
2y = 3
gives y = 3/2 and x = 1/2 as the only solution.
(c) Row reduction
−ρ1+ρ2 x — 3y + z = 1
—→
4y + z = 13
shows, because the variable z is not a leading variable in any row, that there are many solutions.
(d) Row reduction
−3ρ1+ρ2 —x — y = 1
—→
0 = —1
shows that there is no solution.
(e) Gauss’ method
x + y — z = 10 x+ y — z = 10 x+ y— z = 10
ρ1↔ρ4 2x — 2y + z = 0 −2ρ1+ρ2 —4y + 3z = —20 −(1/4)ρ2+ρ3 —4y + 3z = —20
—→ —→ —→
x +z= 5 −ρ1+ρ3 —y + 2z = —5 ρ2+ρ4 (5/4)z = 0
4y + z = 20 4y + z = 20 4z = 0
gives the unique solution (x, y, z) = (5, 5, 0).
(f) Here Gauss’ method gives
2x + z+ w= 5 2x + z+ w= 5
−(3/2)ρ1+ρ3 y — w= —1 −ρ2+ρ4 y — w= —1
—→ —→
−2ρ 1 +ρ 4 — (5/2)z — (5/2)w = —15/2 — (5/2)z — (5 /2)w = —15 /2
y — w= —1 0= 0
which shows that there are many solutions.
One.I.1.18 (a) From x = 1 — 3y we get that 2(1 — 3y) + y = —3, giving y = 1.
(b) From x = 1 — 3y we get that 2(1 — 3y) + 2y = 0, leading to the conclusion that y = 1/2.
Users of this method must check any potential solutions by substituting back into all the equations.

Written for

Institution
Linear Algebra
Course
Linear Algebra

Document information

Uploaded on
December 8, 2025
Number of pages
411
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
NurseCelestine Chamberlain College Of Nursing
View profile
Follow You need to be logged in order to follow users or courses
Sold
120
Member since
1 year
Number of followers
25
Documents
5418
Last sold
1 day ago
Nurse Celestine Study Hub

Welcome! I’m Nurse Celestine, your go-to source for nursing test banks, solution manuals, and exam prep materials. My uploads cover trusted textbooks from top nursing programs — perfect for NCLEX prep, pharmacology, anatomy, and clinical courses. Study smarter, not harder!

4.4

312 reviews

5
203
4
40
3
57
2
5
1
7

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions