100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Exam (elaborations)

Solutions Manual for Introduction to Analysis, An (Classic Version) 4th Edition by Wade, 2018

Rating
-
Sold
-
Pages
296
Grade
A+
Uploaded on
05-12-2025
Written in
2025/2026

Solutions Manual for Introduction to Analysis, An (Classic Version) 4th Edition by Wade, 2018 Solutions Manual for Introduction to Analysis, An (Classic Version) 4th Edition by Wade, 2018 Solutions Manual for Introduction to Analysis, An (Classic Version) 4th Edition by Wade, 2018

Show more Read less
Institution
Introduction To Analysis, An
Course
Introduction to Analysis, An











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Introduction to Analysis, An
Course
Introduction to Analysis, An

Document information

Uploaded on
December 5, 2025
Number of pages
296
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

Covers All 14 Chapters




SOLUTIONS TO EXERCISES

, An Introduction to Analysis

Table of Contents
Chapter 1: The Real Number System

1.2 Ordered field axioms ..................................................... 1
1.3 The Completeness Axiom… ........................................... 2
1.4 Mathematical Induction…............................................... 4
1.5 Inverse Functions and Images… ..................................... 6
1.6 Countable and uncountable sets… ................................. 8


Chapter 2: Sequences in R

2.1 Limits of Sequences… ................................................... 10
2.2 Limit Theorems ............................................................. 11
2.3 Bolzano-Weierstrass Theorem ....................................... 13
2.4 Cauchy Sequences… .................................................... 15
2.5 Limits Supremum and Infimum ...................................... 16

Chapter 3: Functions on R

3.1 Two-Sided Limits… ....................................................... 19
3.2 One-Sided Limits and Limits at Infinity…......................... 20
3.3 Continuity….................................................................. 22
3.4 Uniform Continuity… .................................................... 24

Chapter 4: Differentiability on R

4.1 The Derivative… ........................................................... 27
4.2 Differentiability Theorem…............................................ 28
4.3 The Mean Value Theorem… .......................................... 30
4.4 Taylor’s Theorem and l’Hôpital’s Rule… ........................ 32
4.5 Inverse Function Theorems ........................................... 34

Chapter 5: Integrability on R

5.1 The Riemann Integral….................................................. 37
5.2 Riemann Sums................................................................ 40
5.3 The Fundamental Theorem of Calculus… ....................... 43
5.4 Improper Riemann Integration… .................................... 46
5.5 Functions of Bounded Variation… ................................... 49
5.6 Convex Functions… ...................................................... 51



Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.

,Chapter 6: Infinite Series of Real Numbers

6.1 Introduction… ................................................................. 53
6.2 Series with Nonnegative Terms… ....................................55
6.3 Absolute Convergence… ................................................ 57
6.4 Alternating Series… ....................................................... 60
6.5 Estimation of Series… .....................................................62
6.6 Additional Tests…........................................................... 63

Chapter 7: Infinite Series of Functions

7.1 Uniform Convergence of Sequences… ........................... 65
7.2 Uniform Convergence of Series… .................................. 67
7.3 Power Series… .............................................................. 69
7.4 Analytic Functions… ...................................................... 72
7.5 Applications… ............................................................... 74

Chapter 8: Euclidean Spaces

8.1 Algebraic Structure… .................................................... 76
8.2 Planes and Linear Transformations… ............................. 77
8.3 Topology of Rn .............................................................................................. 79
8.4 Interior, Closure, and Boundary… ................................. 80

Chapter 9: Convergence in Rn

9.1 Limits of Sequences… .................................................... 82
9.2 Heine-Borel Theorem..................................................... 83
9.3 Limits of Functions… ....................................................... 84
9.4 Continuous Functions….................................................. 86
9.5 Compact Sets… ............................................................. 87
9.6 Applications… ................................................................88

Chapter 10: Metric Spaces

10.1 Introduction… .................................................................. 90
10.2 Limits of Functions… ....................................................... 91
10.3 Interior, Closure, and Boundary… ................................... 92
10.4 Compact Sets… .............................................................. 93
10.5 Connected Sets… ........................................................... 94
10.6 Continuous Functions…................................................... 96
10.7 Stone-Weierstrass Theorem ............................................ 97




Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.

, Chapter 11: Differentiability on Rn

11.1 Partial Derivatives and Partial Integrals… .......................... 99
11.2 The Definition of Differentiability… ................................... 102
11.3 Derivatives, Differentials, and Tangent Planes…................ 104
11.4 The Chain Rule… .............................................................. 107
11.5 The Mean Value Theorem and Taylor’s Formula… ............. 108
11.6 The Inverse Function Theorem .......................................... 111
11.7 Optimization… ...................................................................114

Chapter 12: Integration on Rn

12.1 Jordan Regions… ............................................................... 117
12.2 Riemann Integration on Jordan Regions…........................... 119
12.3 Iterated Integrals… .............................................................122
12.4 Change of Variables… ....................................................... 125
12.5 Partitions of Unity… ........................................................... 130
12.6 The Gamma Function and Volume ...................................... 131

Chapter 13: Fundamental Theorems of Vector Calculus

13.1 Curves… ............................................................................ 135
13.2 Oriented Curves….............................................................. 137
13.3 Surfaces…........................................................................... 140
13.4 Oriented Surfaces… ............................................................ 143
13.5 Theorems of Green and Gauss… ......................................... 147
13.6 Stokes’s Theorem................................................................ 150

Chapter 14: Fourier Series

14.1 Introduction… ..................................................................... 156
14.2 Summability of Fourier Series… .......................................... 157
14.3 Growth of Fourier Coefficients… ........................................ 159
14.4 Convergence of Fourier Series… ....................................... 160
14.5 Uniqueness…...................................................................... 163




Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
reagandave Miami Dade College
View profile
Follow You need to be logged in order to follow users or courses
Sold
275
Member since
4 year
Number of followers
9
Documents
1889
Last sold
1 week ago
The Succesful Student's Vault

"Need to ace your exams? Look no further! This shop provides high-quality, comprehensive study guides and practice questions for high school students in Mathematics, Physics, and Chemistry. As a former top-performing student, I know what it takes to succeed and have designed these materials to be both effective and easy to understand. Boost your grades today!"

3.4

34 reviews

5
13
4
8
3
1
2
2
1
10

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions