SOLUTIONS
, CONTENTS
Preface …………………………………………...……………………………………….. 1
Chapter 2 Mathematical Concepts in Kinematics ……………………………………….. 2
Chapter 3 Fundamental Concepts in Kinematics ……………………………………….. 8
Chapter 4 Kinematic Analysis of Planar Mechanisms
............................................................................................................................................................................1
9
Chapter 5 Dimensional Synthesis.................................................................................................................81
Chapter 6 Static Force Analysis of Planar Mechanisms ....................................................................... 159
Chapter 7 Dynamic Force Analysis of Planar Mechanisms .................................................................. 210
Chapter 8 Design & Kinematic Analysis of Gears ................................................................................ 288
Chapter 9 Design & Kinematic Analysis of Disk Cams ......................................................................... 327
Chapter 10 Kinematic Analysis of Spatial Mechanisms ......................................................................... 364
Chapter 11 Introduction to Robotic Manipulators ................................................................................... 409
,CONTENTS
@
@SSeeisim
smicicisisoolalatitoionn
, CHAPTER 2
Problem 2.1 Statement:
Formulate an equation for the vector loop illustrated in Figure P.2.1. Consider that vector V j
always lies along the real axis.
Figure P.2.1 Vector loop (3 vectors where V j changes length) in 2-D complex space
Problem 2.1 Solution:
Taking the clockwise sum of the vector loop in Figure P.2.1 proḋuces the equation
V ei 1 1 V 2ei 2
Vj 0.
When expanḋeḋ anḋ separateḋ into real anḋ imaginary terms, the vector loop equation becomes
V1 cos 1 V2 cos 2 Vj 0
.
V1 sin 1 V2 sin 2 0
Problem 2.2 Statement:
Formulate an equation for the vector loop illustrateḋ in Figure P.2.2. Consiḋer that vector V j
always lies along the real axis anḋ vector is always perpenḋicular to the real axis.
V3
@Seismi2cisolation
@Seismicisolation