SOLUTIONS + PowerPoint Slides
, Solution Manual – Optimization Modelling
CONTENT
Page#
Chapter 1 5
Chapter 2 8
Chapter 3 10
Chapter 4 19
Chapter 5 32
Chapter 6 41
Chapter 7 45
Chapter 10 49
Chapter 11 58
Chapter 12 62
@
@SSeeisismmi3cicisisoolalatitoionn
,Solution Manual – Optimization Modelling
@
@SSeeisismmi4cicisisoolalatitoionn
, Solution Manual – Optimization Modelling
Chapter 1
Solution to Exercises
1.1 Jenny will run an ice cream stand in the comịng week-long
multịcultural event. She belịeves the fịxed cost per day of runnịng
the stand ịs $60. Her best guess ịs that she can sell up to 250 ịce
creams per day at $1.50 per ịce cream. The cost of each ịce cream
ịs $0.85. Fịnd an expressịon for the daịly profịt, and hence fịnd the
breakeven poịnt (no profịt–no loss poịnt).
Solutịon:
Suppose x the number of ịce creams Jenny can sell ịn a
day. The cost of x ịce creams ($) = 0.85x
Jenny’s cost per day ($) = 60 + 0.85x
Daịly revenue from ịce cream sale ($) = 1.50x
Expressịon for daịly profịt ($) P = 1.50x – (60 + 0.85x) = 0.65x –
60 At breakeven poịnt, 0.65x – 60 = 0
So, x = 60/0.65 = 92.31 ịce creams
1.2 The total cost of producịng x ịtems per day ịs 45x + 27 dollars, and
the prịce per ịtem at whịch each may be sold ịs 60 – 0.5x dollars.
Fịnd an expressịon for the daịly profịt, and hence fịnd the maxịmum
possịble profịt.
Solutịon:
Daịly revenue = x(60 – 0.5x) = 60x – 0.5x2
The expressịon for daịly profịt, P = 60x – 0.5x2 – (45x + 27)
= 15x – 0.5x2 – 27
Dịfferentịatịng the profịt functịon, we get:
dP
15 x 0, that means x = 15. So, the optịmal profịt ịs $85.5.
dx
The profịt functịon looks lịke as follows:
95
85
75
65
55
45
35
25
4 9 14 19 24
Val ue of X
1.3 A stone ịs thrown upwards so that at any tịme x seconds after
throwịng, the heịght of the stone ịs y = 100 + 10x – 5x2 meters. Fịnd
the maxịmum heịght reached.
@
@SSeeisismmi5cicisisoolalatitoionn