n n n
SOLUTIONS MANUAL
n
,Tableofcontents n n
Part 1: Foundations and elementary applications
n n n n n
1. Mathematical Preliminaries n
2. Deformation: Displacements and Strains n n n
3. Stress and Equilibrium
n n
4. Material Behavior – Linear Elastic Solids
n n n n n
5. Formulation and Solution Strategies
n n n
6. Strain Energy and Related Principles
n n n n
7. Two-Dimensional Formulation n
8. Two-Dimensional Problem Solution n n
9. Extension,Torsion, andFlexure of Elastic Cylinders
n n n n n n
Part 2: Advanced applications
n n n
10. Complex Variable Methods
n n
11. Anisotropic Elasticity n
12. Thermoelasticity
13. Displacement Potentials and Stress Functions: Applications to Three-Dimensional Problems
n n n n n n n n
14. Nonhomogeneous Elasticity n
15. Micromechanics Applications n
16. Numerical Finite and Boundary Element Methods
n n n n n
,1
1-1.
(a) aii = a11 + a22 + a33 =1+ 4 +1= 6 (scalar) n
n
n
n
n
n
n
n n n n n n n n
aij aij = a11a11 + a12 a12 + a13a13 + a21a21 + a22 a22 + a23a23 + a31a31 + a32a32 + a33a33
n n
n
n
n
n n
n
n n
n
n
n
n n
n
n n
n
n
n
n n
n
n
=1+1+1+ 0+16+ 4+ 0+1+1= 25 (scalar)
n n n n n n n n n n n n n n n n n n n n
1 1 11 1 1 1 6 4
a a = 0 4 20 4 2 = 0 18 10 (matrix)
n
n n
n n n n n n n
ij n
jk
0 1 10 1 1 0 5 3
n
n
3
ab b = a b + a + ab = 4 (vector)
n
n n n n n n n
n n
ij
jn
i1 1 i2 2 n i3 3 n n n n
n
2
aij bibj = a11b1b1 + a12b1b2 + a13b1b3 + a21b2b1 + a22b2b2 + a23b2b3 + a31b3b1 + a32b3b2 + a33b3b3
n
n n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
=1+ 0+ 2+ 0+ 0+ 0+ 0+ 0+ 4 = 7 (scalar)
n n n n n n n n n n n n n n n n n n n n
b1b1 b1b2 b1b3 1 0 2
b b = b b b b b b = 0 0 0 (matrix)
n
n n
n n n n n n n n
2 3
i j 2 1 2 n n
n
n
n n
n 2
b3b1 b3b2 b3b3 2 0 4 n
bibi = b1b1 +b2b2 +b3b3 =1+ 0+ 4 = 5 (scalar)
n
n
n
n
n
n
n
n n n n n n n n
(b) aii = a11 +a22 +a33 =1+ 2+2 = 5 (scalar) n
n
n
n
n
n
n
n n n n n n n n
aijaij = a11a11 + a12a12 + a13a13 +a21a21 +a22a22 +a23a23 +a31a31 +a32a32 +a33a33
n n
n
n
n
n n
n
n
n
n
n
n n
n
n
n
n
n
n n
n
=1+ 4+0+0+ 4+ 1+ 0+16+ 4 = 30 (scalar)
n n n n n n n n n n n n n n n n
1 2 01 2 0 1 6 2
a a = 0 2 10 2 1 = 0 8 4 (matrix)
n n
n
n
n
ij n
jk
0 4 20 4 2 0 8
n
4 16
a b = a b +a b +a b = 3 (vector)
n
n
n n n n n n n n n n n n
ij i1 i2 ni3 3 n n
n
jn 1 2 n n
6
aijbibj = a11b1b1 +a12b1b2 +a13b1b3 +a21b2b1 +a22b2b2 +a23b2b3 +a31b3b1 +a32b3b2 +a33b3b3
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
= 4+4+0+0+2+ 1+ 0+4+2 =17 (scalar)
n n n n n n n n n n n n n n n n n n
b1b1 b1b2 b1b3 4 2 2
bb = b b
n
n b b b b = 2 1 1 (matrix)
n n n n n n
n
n
n
i j 2 1 2 n
2 3
n n
n n
n
n 2
b3b1 b3b2 b3b3 2 1 1 n
bibi =b1b1 +b2b2 +b3b3 = 4+ 1+1 = 6 (scalar)
n
n
n
n
n
n
n
n n n n n
Copyright © 2009, Elsevier Inc. All rights reserved. n n n n n n n
, 2
(c) aii = a11 +a22 +a33 =1+0+4 = 5 (scalar)
n
n
n
n
n
n
n
n n n n n n n n
aijaij = a11a11 +a12a12 +a13a13 +a21a21 +a22a22 +a23a23 +a31a31 +a32a32 +a33a33
n n
n
n
n
n n
n
n
n
n
n
n n
n
n
n
n
n
n n
n
=1 +1+1+1+ 0+4+0+ 1+16 = 25 (scalar)
n n n n n n n n n n
1 1 11 1 1 2 2 7
a a = 1 0 21 0 2 = 1 3 9 (matrix)
n
n n
n n n n
ij
n
jk
0 1 40 1 4 1 4 18
n
n n
2
a b = a b +a b +a b = 1 (vector)
n n n n n n n n n n n n
n
ij i1 i2 n i3 3 n n
n
n j 1 2 n n
1
aijbibj = a11b1b1 +a12b1b2 +a13b1b3 +a21b2b1 +a22b2b2 +a23b2b3 +a31b3b1 +a32b3b2 +a33b3b3
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
=1 +1+ 0+ 1+ 0+0+0+0+0 = 3 (scalar)
n n n n n n n n n n n n n n n
b1b1 b1b2 b1b3 1 1 0
bb = b b 0 (matrix)
n
n bb bb = 1 1
n n n n n n
n
n
n
i j 2 1 n 2 2 3
n n
n n
n
n 2
b3b1 b3b2 b3b3 0 0 0 n
bibi =b1b1 +b2b2 +b3b3 =1 +1+ 0 = 2 (scalar)
n
n
n
n
n
n
n
n n n n n
1-2.
1 1
(a) aij = (aij +aji )+ (aij −aji ) n n n n n n n
2 2
n n n n n
n n
1 2 1 1 1 0 1 1
0 1
n
= 1 8 3 + −1
n n
n
n n
2 2
1 3 2 −1 −1 0
n n
clearlya(ij) and a[ij] satisfy theappropriateconditions n n
n
n n
n n n
1 1
= (a + a )+ (a − a )
n n
a
(b) ij 2 ij ji
n n n
ji
2 ij
n n
n
1 2 2 0 1 0 2 0
= 2 4 5 + −2
n n
0 −3
n n
n
n n n n
2 2
0 5 4 0 3 0
n n
n
n
clearlya(ij) and a[ij] satisfy theappropriateconditions n n
n
n n
n n n
Copyright © 2009, Elsevier Inc. All rights reserved.
n n n n n n n