100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Exámenes anteriores ÁLGEBRA LINEAL

Rating
-
Sold
-
Pages
25
Grade
9 (Sobresaliente)
Uploaded on
03-02-2021
Written in
2016/2017

Exámenes anteriores de ÁLGEBRA LINEAL

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
February 3, 2021
Number of pages
25
Written in
2016/2017
Type
Exam (elaborations)
Contains
Answers

Subjects

Content preview

Primer Control d’Àlgebra Lineal Grau d’Enginyeria Quı́mica
Grup T1 Grau d’Enginyeria de Materials
3 d’Octubre 2016 Universitat de Barcelona




1. (2 punts) Calcula el rang de la matriu A i el determinant de B:
   
2 3 −4 1 −1 −3 −1
 1 2 −3  , B =  2 −1 −4
 1 
A=  3 −1
.
5   3 4 −2 6 
−1 4 −9 2 −2 −5 1

2. (2 punts) Resol el sistema següent:

2x + y + z + 3t = 5
3x + 2y − z + 5t = 7

3. Considera el sistema d’equacions lineals

kx + y + z = 1 
x + ky − z = −1
x + ky + z = 2


on k és un nombre real.
(a) (2 punts) Discuteix el sistema segons els valors de k. És a dir, digues per
a quins valors de k el sistema és incompatible, per a quins és compatible
indeterminat i per a quins és compatible determinat.
(b) (2 punts) Per al valor k = −1, troba les solucions del sistema.

4. En aquest exercici a, b, c i d representen nombres reals tots ells diferents de 0.
(a) (1 punt) Calcula la inversa de la matriu
 
a 0 0 0
0 b 0 0
 ,
0 0 c 0
0 0 0 d

(b) (1 punt) Calcula el determinant de la matriu
 
a b c d
 0 b c d
 0 0 c d .
 

0 0 0 d

,Segon Control d’Àlgebra Lineal Grau d’Enginyeria Quı́mica
Grup T1 Grau d’Enginyeria de Materials
2 de desembre de 2016 Universitat de Barcelona




1. Sigui f l’endomorfisme de R3 definit per:

f (x, y, z) = (−4x + 6y + 3z, 2y, −6x + 6y + 5z).

(a) (1 punt) Calcula la matriu de f en la base canònica de R3 .
(b) (1 punt) Calcula el polinomi caracterı́stic de f .
(c) (1 punt) Calcula els valors propis de f i la seva multiplicitat.
(d) (2 punts) Per a cada valor propi, calcula una base de vectors propis asso-
ciats.
(e) (1 punt) Digues si f diagonalitza. En cas afirmatiu, dóna una base de R3
en què f diagonalitzi i la matriu de f en aquesta base.

2. (2 punts) Sigui g : R2 → R2 l’aplicació lineal donada per

g(x, y) = (2x + y, −x + 3y).

Siguin B i B 0 les bases de R2 següents:

B = {(−1, 2), (3, 1)}, B 0 = {(1, 1), (1, 2)}.

Calcula M (g, B, B 0 ), la matriu de g en les bases B a la sortida i B 0 a l’arribada.

3. (a) (1 punt) Expressa en forma polar els tres nombres complexos següents:

1 + i, −1 + i, (1 + i) · (−1 + i).

(b) (1 punt) Dóna un exemple de nombre complex que tingui mòdul 1 i part
imaginària negativa.

, Parcial d’Àlgebra Lineal Grau d’Enginyeria Quı́mica
Grups M1 i T1 Grau d’Enginyeria de Materials
3 de novembre 2016 Universitat de Barcelona

Feu problemes diferents en fulls diferents. Poseu el nom a tots els fulls que entregueu.

1. (1 punt) Digues si els conjunts següents són subespai vectorial de R3 , tot justificant
el perquè:

F = {(x, y, z) ∈ R3 : x + y + 2z = 1}.
G = {(x, y, z) ∈ R3 : x + y + 2xz = 0}.

2. Siguin F i G els subespais de R4 següents:

F = h(1, 0, 1, 2), (2, 1, 1, 0), (−4, −3, −1, 4)i,
G = {(x, y, z, t) ∈ R4 : x − 3y + z − t = 0, x + y + z + t = 0}.

(a) (0.5 punts) Calcula una base de F .
(b) (1 punt) Calcula una base de F ∩ G.
(c) (1 punt) Calcula la dimensió de F + G.

3. Sigui B una base de R3 formada per vectors v1 , v2 i v3 . Definim:

w1 = v1 ; w2 = v1 + v2 ; w3 = 2v1 + v2 ,

(a) (1 punt) Els vectors w1 , w2 , w3 formen una base de R3 ? Per què?
(b) (1 punt) En cas afirmatiu, calcula la matriu del canvi de base de {w1 , w2 , w3 } a
base {v1 , v2 , v3 }. En cas negatiu, dóna un vector w30 tal que {w1 , w2 , w30 } sigui
base de R3 .

4. Dóna un exemple de:
(a) (0.5 punts) Una aplicació f : R2 −→ R2 que no sigui lineal.
(b) (0.5 punts) Dos subespais vectorials F i G de R3 tals que dim(F + G) = 3.
(c) (0.5 punts) Un sistema d’equacions les solucions del qual formin un subespai
vectorial de R4 de dimensió 3.
(d) (0.5 punts) Tres vectors de R5 linealment dependents.
Justifica les respostes.

5. Sigui f : R3 −→ R3 l’aplicació lineal definida per

f (x, y, z) = (2x + y + z, x + 2y, 3x + 6y + z).

(a) (0.5 punts) Calcula la matriu de f en la base canònica de R3 .
(b) (1 punt) Calcula la dimensió i una base de la imatge de f . És f exhaustiva?
(c) (1 punt) Calcula el nucli de f . És f injectiva?
$4.22
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
jzhouzhou

Get to know the seller

Seller avatar
jzhouzhou Universitat de Barcelona
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
4 year
Number of followers
0
Documents
7
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions