First Course in Abstract Algebra A
8th Edition by John B. Fraleigh
All Chapters Full Complete EXAM
QUESTIONS WITH CORRECT
ANSWERS
,
, CONTENTS
1. Sets and Relations 1
I. Groups and Subgroups
2. Introduction and Examples 4
3. Binary Operations 7
4. Isomorphic Binary Structures 9
5. Groups 13
6. Subgroups 17
7. Cyclic Groups 21
8. Generators and Cayley Digraphs 24
II. Permutations, Cosets, and Direct Products
9. Groups of Permutations 26
10. Orbits, Cycles, and the Alternating Groups
30
11. Cosets and the Theorem of Lagrange 34
12. Direct Products and Finitely Generated Abelian Groups 37
13. Plane Isometries 42
III. Homomorphisms and Factor Groups
14. Homomorphisms 44
15. Factor Groups 49
16. Factor-Group Computations and Simple Groups 53
17. Group Action on a Set 58
18. Applications of G-Sets to Counting 61
IV. Rings and Fields
19. Rings and Fields 63
20. Integral Domains 68
21. Fermat’s and Euler’s Theorems 72
22. The Field of Quotients of an Integral Domain 74
23. Rings of Polynomials 76
24. Factorization of Polynomials over a Field 79
25. Noncommutative Examples 85
26. Ordered Rings and Fields 87
V. Ideals and Factor Rings
27. Homomorphisms and Factor Rings 89
28. Prime and Maximal Ideals 94
, 29. Gröbner Bases for Ideals 99