Candidate surname Other names
Centre Number Candidate Number
Pearson Edexcel International Advanced Level
Tuesday 15 October 2024
Morning (Time: 1 hour 30 minutes) Paper
reference WMA12/01
Mathematics
International Advanced Subsidiary/Advanced Level
Pure Mathematics P2
You must have: Total Marks
Mathematical Formulae and Statistical Tables (Yellow), calculator
Candidates may use any calculator permitted by Pearson regulations. Calculators
must not have the facility for symbolic algebra manipulation, differentiation and
integration, or have retrievable mathematical formulae stored in them.
Instructions
•• Use black ink or ball-point pen.
•
If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
Fill in the boxes at the top of this page with your name,
••
centre number and candidate number.
Answer all questions and ensure that your answers to parts of questions are clearly labelled.
Answer the questions in the spaces provided
•
– there may be more space than you need.
You should show sufficient working to make your methods clear. Answers without working
•
may not gain full credit.
Inexact answers should be given to three significant figures unless otherwise stated.
Information
•• A booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
•
There are 11 questions in this question paper. The total mark for this paper is 75.
The marks for each question are shown in brackets
– use this as a guide as to how much time to spend on each question.
Advice
•• Read each question carefully before you start to answer it.
••
Try to answer every question.
Check your answers if you have time at the end.
If you change your mind about an answer, cross it out
and put your new answer and any working underneath. Turn over
P76187RA
©2024 Pearson Education Ltd.
V:1/1/1/1/1/
*P76187RA0132*
,1. A continuous curve has equation y = f (x).
A table of values of x and y for y = f (x) is shown below.
DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA
x 0.5 1.75 3 4.25 5.5
y 3.479 6.101 7.448 6.823 5.182
Using the trapezium rule with all the values of y in the given table,
(a) find an estimate for
5.5
f x
dx
0.5
giving your answer to one decimal place.
(3)
(b) Using your answer to part (a) and making your method clear, estimate
5.5
f x
4 x
dx
0.5
(2)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
2
*P76187RA0232*
, Question 1 continued
_____________________________________________________________________________________
DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
(Total for Question 1 is 5 marks)
3
*P76187RA0332* Turn over
, 2. A sequence of numbers u1, u2, u3, ... is defined by
u1 = 7
DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA
un+1 = (–1)n un + k
where k is a constant.
(a) Show that u5 = 7
(3)
4
Given that ur 30
r 1
(b) find the value of k.
(2)
150
(c) Hence find the value of ur
r 1 (2)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
4
*P76187RA0432*