100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

TEST BANK FOR College Algebra: Graphs and Models, 7th edition by Marvin L. Bittinger, Judith A. Beecher, Judith A. Penna ISBN:9780138240691 COMPLETE GUIDE ALL CHAPTERS COVERED 100% VERIFIED A+ GRADE ASSURED!!!!!NEW LATEST UPDATE!!!!!

Rating
-
Sold
-
Pages
647
Grade
A+
Uploaded on
10-11-2025
Written in
2025/2026

TEST BANK FOR College Algebra: Graphs and Models, 7th edition by Marvin L. Bittinger, Judith A. Beecher, Judith A. Penna ISBN:9780138240691 COMPLETE GUIDE ALL CHAPTERS COVERED 100% VERIFIED A+ GRADE ASSURED!!!!!NEW LATEST UPDATE!!!!!

Show more Read less
Institution
College Algebra: Graphs And Models, 7th Edition
Course
College Algebra: Graphs And Models, 7th Edition











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
College Algebra: Graphs And Models, 7th Edition
Course
College Algebra: Graphs And Models, 7th Edition

Document information

Uploaded on
November 10, 2025
Number of pages
647
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

Copyright
pn c 2025 Pearson Education, In
◯p n pn pn pn

,Chapter 1 p n




Graphs, Functions, and Models p n p n p n




To graph (−1, 4) we move from the origin 1
p n p n pn p n p n p n p n p n p n p


o the p n



Check Your Understanding Section 1.1
pn pn pn pn
left of the y- p n p n p n



axis. Then we move 4 units up from the
p n p n p n p n p n p n p n p n p n



1. The point (— 5, 0) is on an axis, so it is not in any quadr
pn pn p n pn pn pn pn pn pn pn pn pn pn pn pn
x-axis.
ant. The statement is false.
pn pn pn pn To graph (0, 2) we do not move to the right or the
pn pn pn pn pn pn pn pn pn pn pn pn


f the y-
p n pn

2. The ordered pair (1,— 6) is located 1 unit right of the ori
axis since the first coordinate is 0. From the origin
pn pn pn p n pn pn pn pn pn pn pn pn


gin and 6 units below it. The ordered pair— ( 6, 1) is loca
pn pn pn pn pn pn p n pn pn

pn pn pn pn pn pn pn pn pn p n pn pn pn
move 2 units up. pn pn pn

ted 6 units left of the origin and 1 unit above it. Thus,
pn pn —( pn pn pn pn pn pn pn pn pn p n pn


1, 6)— and ( 6, 1) do not name the same point.
p n p n p n p n pn p n p n p n p n p n p n p
To graph (2, —2) we move from the origin 2 units t
pn pn p n pn pn pn pn pn pn pn pn



The statement is false.
n p n pn pn
right of the y- pn pn pn

y
axis. Then we move 2 units down from the x-a
p n pn pn pn pn pn pn pn pn


3. True; the first coordinate of a point is also called the abs
pn pn pn pn pn pn pn pn pn pn pn

( 1, 4)
cissa.
pn

p n 4
4. True; the point ( 2 7) is 2 units left of the origin and
− ,
p n p n p n p n p n p n p n p n p n p n p n p n p n
pn
2p n (0,pn2)
(4, 0
7 units above it.
pn

pn pn pn p n )
2 (2, p n p n

2)
5. True; the second coordinate of a point is also called the
pn pn pn pn pn pn pn pn pn pn pn
( 3, p n p n 5)
4
ordinate.
6. False; the point (0, −3) is on the y-axis.
p n p n p n pn p n p n p n p n
5. To graph ( 5, 1) we move from the origin 5
p n p n p n p n pn p n p n p n p n p n p n


to the left— of the y-
p n p n pn pn pn pn



axis. Then we move 1 unit up from the x-axis.
p n pn pn pn pn pn pn pn pn



Exercise Set 1.1 pn pn
To graph (5, 1) we move from the origin 5 units to
pn pn pn pn pn pn pn pn pn pn pn pn



ht of the y-
pn p n p n


1. Point A is located 5 units to the left of the y-
p n p n p n p n p n p n p n p n p n p n p n axis. Then we move 1 unit up from the x-ax
p n p n p n p n p n p n p n p n p n


axis and 4 units up from the x-
p n p n p n p n p n p n p n
To graph (2, 3) we move from the origin 2 units to
pn pn pn pn pn pn pn pn pn pn pn pn

axis, so its coordinates are (−5, 4).
p n p n p n p n p n pn
ht of the y-
pn p n p n


Point B is located 2 units to the right of the y-
p n p n p n p n p n p n p n p n p n p n p n axis. Then we move 3 units up from the x-a
p n p n p n p n p n p n p n p n p n


axis and 2 units down from the x-
p n pn pn pn pn pn pn
To graph (2, —1) we move from the origin 2 units t
pn pn p n pn pn pn pn pn pn pn pn

axis, so its coordinates are (2, −2).
pn pn pn pn pn pn
right of the y- p n p n p n


Point C is located 0 units to the right or left of the y-
pn pn pn pn pn pn pn pn pn pn pn pn pn axis. Then we move 1 unit down from the x-a
p n p n p n p n p n p n p n p n pn


axis and 5 units down from the x-
pn pn pn pn pn pn pn
To graph (0, 1) we do not move to the right or the
pn pn pn pn pn pn pn pn pn pn pn pn

axis, so its coordinates are (0, −5).
pn pn pn pn pn pn
f the y-
p n pn


Point D is located 3 units to the right of the y-
p n p n p n p n p n p n p n p n p n p n p n axis since the first coordinate is 0. From the origin
pn pn pn pn pn pn p n pn pn


axis and 5 units up from the x-
p n pn pn pn pn pn p n move 1 unit up. pn pn pn



axis, so its coordinates are (3, 5).
pn pn pn pn pn pn

y
Point E is located 5 units to the left of the y-
p n p n p n p n p n p n p n p n p n p n p n



axis and p n
4
4 units down from the x-
p n p n p n p n p n
2
(2, 3)pn



axis, so its coordinates are (−5, −4).
p n p n p n p n p n pn ( 5, pn (0, 1) pn (5, 1) pn

1)
Point F is located 3 units to the right of the y-
p n p n p n p n p n p n p n p n p n p n p n
4 2 2p n (2,p n p


axis and 0 units up or down from the x-
p n pn pn pn pn pn pn pn pn n 1)
axis, so its coordinates are (3, 0).
pn pn pn pn pn pn 4

3. To graph (4, 0) we move from the origin 4 units to the ri
7. The first coordinate represents the year and the co
p n pn pn pn pn pn pn pn pn pn pn pn pn pn
pn pn pn pn pn pn pn pn pn

ght of the y-
sponding second coordinate represents the number
pn pn pn
pn pn pn pn pn pn

axis. Since the second coordinate is 0, we do not move
es served by Southwest Airlines. The ordered pair
p n pn pn pn pn pn pn pn pn pn pn


up or down from the x-axis.
pn pn pn pn p n pn pn


(1971, 3), (1981, 15), (1991, 32), (2001, 59),
pn pn pn pn pn
n pn p n p n p n p n p n p n p n


To graph (− 3, 5) we move from the origin 3 units to
pn pn p np n p n
p n pn pn pn pn pn pn pn pn pn
, 72), pn


the left of −the y-
pn p n p n p n and (2021, 121). pn pn


axis. Then we move 5 units down from the x-axis.
p n p n p n p n p n p n p n p n pn




Copyright pnc 2025 Pearson Education, In
◯ p n pn pn pn

,
, 14 Chapter 1: pn p n p n Graphs, Functions, and pn pn


els

9. To determine whether (−1, −9) is a solution, sub
p n p n p n p n pn p n p n p n p n
2a + 5b = 3 pn pn pn pn pn



stitute 3
−1 for x and −9 for 2·0+5· ? 3
5
pn pn pn pn pn pn pn pn pn pn pn p n p n pn

p n


y. y = 7x − 2
pn pn pn pn pn




−9 ?¯ 7(−1) −p n pn pn 0+3¯ pn pn pn




¯ 2 3 ¯3 p n
pn
p n TRUE
−7 − 2 pn pn
³ 3´ pn


−9 ¯ −9 The equation 3 = 3 is true, so 0, is a solution.
pn

p n
pn
TRUE pn pn pn pn pn pn pn pn pn pn pn




The equation −9 = −9 is true, so (−1, −9) is a s
p n p n pn p n p n p n p n p n pn p n p n p n
5
olution. To determine whether (0, 2) is a solution, subs
pn pn pn pn pn pn pn pn pn
15. To determine whether (−0.75, 2.75) is a solutio
p n p n p n pn p n p n p n



bsti- tute −0.75 for x and 2.75 for y.
pn pn pn pn pn pn pn

titute 0 for
pn

pn pn



x and 2 for y.
pn pn pn pn
x2 − y2 = 3pn pn pn pn pn




y = 7x − 2
p n pn pn pn




2 ? 7·0
p n p n pn pn pn
(−0.75)2 − (2.75)2 ?¯ 3 pn
pn
p n

pn
pn




−2 pn




¯ 0— 2 0.5625 − 7.5625 pn pn

¯
¯
2 −2 pn
FALSE −7 ¯ 3 p n
pn
p n FALSE
The equation 2 = −2 is false, so (0, 2) is not a solutio
pn pn pn pn pn pn pn pn pn pn pn pn pn
The equation − p n −
n. 0.75, 2.7 7 = 3 is false, so (
p n p n p n p n p n p n p n pn


³2 3 ´ 2 pn pn
nnot a solution.p n pn


11. To determine whether , is a solution, substitute
pn pn

pn pn pn pn pn pn pn pn p n
To determine whether (2, −1) is a solution, s
e 2
p n p n p n pn p n p n p n p n

p n


3 4 3
3
p n

for x and −1 for y.
for x and for y.
p n pn pn pn pn pn
pn pn p n pn


4 x − y2 = 3
2
pn pn pn pn pn



6x − 4y = 1
22 − (−1)2 ?¯ 3
pn pn p n pn p
pn p n
n pn pn
pn

2 3 4— 1
6 1· −4· ? ¯
3 4
pn p n pn pn p n
p n pn


3 ¯3
pn p n


4 p n
pn
p n TRUE
¯ 3 p n




— The equation 3 = 3 is true, so (2, −1) is a solu
pn p n pn pn p n p n p n pn pn p n pn pn


1 ¯ 1 TRUE pn
p n


³2 3 ´ pn 17. Graph 5x − 3y = −15.
pn pn pn pn pn pn
p n pn

The equation 1 = 1 is³ true, , is a solutio
xTo find the x-
p pnn

3
pn pn pn pn pn pn pn pn pn


3 ´ pn p n p n

so n. substitute 1 for
pn pn


To determine whether 1, is a solution, intercept we replace y with 0 and solve for
pn



4
pn pn pn pn pn pn pn pn pn p n p n p n p n p n p n p n p n




2 . 5x − 3 · 0 = −15 pn pn pn pn pn pn


3
x and for y. 5x = −15 pn pn

2
pn pn pn

pn


6x − 4y = 1 pn pn p n pn pn
x = −3 pn pn




The x-intercept is (−3, 0).
p n p n p n

3
pn



6·1−4· ? 1
p n



2
pn pn pn pn pn p n p n pn
To find the y-
p n p n p n



intercept we replace x with 0 and solve for
p n p n p n pn p n p n p n p n

6−6 ¯pn pn
y.
0 ¯1 p n
pn
p n FALSE 5 · 0 − 3y = −15
pn pn pn pn pn pn

³ p n

−3y = −15
pn
pn pn



The equation 0 = 1 is false, so 1, y = 5
2
pn pn pn pn pn pn pn p n p n pn p n pn pn




is not a solution.
pn pn pn The y-intercept is (0, 5).
pn pn pn pn


³ 1 4´ We plot the intercepts and draw the line th
pn pn


13. To determine whether − , − is a solution, substitute
pn pn
p n p n p n p n p n p n p n p n
pn pn pn pn pn pn pn pn pn

ntains
pn

2 5
1 4 them. We could find a third point as a c
− for a and − for b.
p n p n p n p n p n p n p n p n p n p n


2 5 that the were found correctly.
p
n pn pn pn pn

intercepts
pn

p n p n n p n pn pn pn



2a + 5b = 3 pn pn pn pn pn
³ 1´ ³ 4´ pn pn pn pn


2 − +5 − ? 3
pn pn

pn pn pn p n pn



2 5
−1 − 4 pn pn





Copyright c 2025 Pearson Education, In

pn p n pn pn pn
$17.99
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
Procrastinerd
3.5
(2)

Get to know the seller

Seller avatar
Procrastinerd Harvard University
View profile
Follow You need to be logged in order to follow users or courses
Sold
4
Member since
7 months
Number of followers
0
Documents
281
Last sold
1 week ago

3.5

2 reviews

5
0
4
1
3
1
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions