100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

SOLUTION MANUAL FOR Mathematical Proofs: A Transition to Advanced Mathematics 4th Edition by Gary Chartrand, Albert Polimeni ISBN:978-0134746753 COMPLETE GUIDE ALL CHAPTERS COVERED 100% VERIFIED A+ GRADE ASSURED!!!!!!NEW LATEST UPDATE!!!!!!

Rating
-
Sold
-
Pages
376
Grade
A+
Uploaded on
10-11-2025
Written in
2025/2026

SOLUTION MANUAL FOR Mathematical Proofs: A Transition to Advanced Mathematics 4th Edition by Gary Chartrand, Albert Polimeni ISBN:978-0134746753 COMPLETE GUIDE ALL CHAPTERS COVERED 100% VERIFIED A+ GRADE ASSURED!!!!!!NEW LATEST UPDATE!!!!!!

Show more Read less
Institution
Mathematical Proofs 4th Edition
Course
Mathematical Proofs 4th edition











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Mathematical Proofs 4th edition
Course
Mathematical Proofs 4th edition

Document information

Uploaded on
November 10, 2025
Number of pages
376
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

lOMoARcPSD|58847208

, lOMoARcPSD|58847208




Table of Contents
pn pn




0. Communicating Mathematics pn



0.1 Learning Mathematics pn



0.2 What Others Have Said About Writing
pn pn pn pn pn



0.3 Mathematical Writing pn



0.4 Using Symbols pn



0.5 Writing Mathematical Expressions pn pn



0.6 Common Words and Phrases in Mathematics pn pn pn pn pn



0.7 Some Closing Comments About Writing
pn pn pn pn




1. Sets
1.1 Describing a Set pn pn



1.2 Subsets
1.3 Set Operations
pn



1.4 Indexed Collections of Sets pn pn pn



1.5 Partitions of Sets pn pn



1.6 Cartesian Products of Sets Exercises for Chapter 1
pn pn pn pn pn pn pn




2. Logic
2.1 Statements
2.2 Negations
2.3 Disjunctions and Conjunctions pn pn



2.4 Implications
2.5 More on Implications pn pn



2.6 Biconditionals
2.7 Tautologies and Contradictions pn pn



2.8 Logical Equivalence pn



2.9 Some Fundamental Properties of Logical Equivalence
pn pn pn pn pn



2.10 Quantified Statements pn



2.11 Characterizations Exercises for Chapter 2 pn pn pn pn




3. Direct Proof and Proof by Contrapositive
pn pn pn pn pn



3.1 Trivial and Vacuous Proofs pn pn pn



3.2 Direct Proofs pn



3.3 Proof by Contrapositive pn pn



3.4 Proof by Cases pn pn



3.5 Proof Evaluations pn



Exercises for Chapter
pn pn pn pn



3

4. More on Direct Proof and Proof by Contrapositive
pn pn pn pn pn pn pn



4.1 Proofs Involving Divisibility of Integers
pn pn pn pn



4.2 Proofs Involving Congruence of Integers
pn pn pn pn



4.3 Proofs Involving Real Numbers pn pn pn



4.4 Proofs Involving Sets pn pn



4.5 Fundamental Properties of Set Operations pn pn pn pn



4.6 Proofs Involving Cartesian Products of Sets Exercises for Chapter 4
pn pn pn pn pn pn pn pn pn




5. Existence and Proof by Contradiction
pn pn pn pn



5.1 Counterexamples
5.2 Proof by Contradiction pn pn



iv


5.3 A Review of Three Proof Techniques
pn pn pn pn pn

, lOMoARcPSD|58847208




5.4 Existence Proofs pn



5.5 Disproving Existence Statements Exercises for Chapter 5
pn pn pn pn pn pn




6. Mathematical Induction pn



6.1 The Principle of Mathematical Induction
pn pn pn pn



6.2 A More General Principle of Mathematical Induction
pn pn pn pn pn pn



6.3 The Strong Principle of Mathematical Induction
pn pn pn pn pn



6.4 Proof by Minimum Counterexample Exercises for Chapter 6
pn pn pn pn pn pn pn




7. Reviewing Proof Techniques
pn pn



7.1 Reviewing Direct Proof and Proof by Contrapositive
pn pn pn pn pn pn



7.2 Reviewing Proof by Contradiction and Existence Proofs
pn pn pn pn pn pn



7.3 Reviewing Induction Proofs pn pn



7.4 Reviewing Evaluations of Proposed Proofs Exercises for Chapter 7
pn pn pn pn pn pn pn pn




8. Prove or Disprove
pn pn



8.1 Conjectures in Mathematics pn pn



8.2 Revisiting Quantified Statements pn pn



8.3 Testing Statements Exercises for Chapter 8
pn pn pn pn pn




9. Equivalence Relations pn



9.1 Relations
9.2 Properties of Relations pn pn



9.3 Equivalence Relations pn



9.4 Properties of Equivalence Classes pn pn pn



9.5 Congruence Modulo n pn pn



9.6 The Integers Modulo n Exercises for Chapter 9
pn pn pn pn pn pn pn




10. Functions
10.1 The Definition of Function
pn pn pn



10.2 One-to-one and Onto Functions pn pn pn



10.3 Bijective Functions pn



10.4 Composition of Functions pn pn



10.5 Inverse Functions pn pn



Exercises for Chapter 10
pn pn pn




11. Cardinalities of Sets pn pn



11.1 Numerically Equivalent Sets pn pn



11.2 Denumerable Sets pn



11.3 Uncountable Sets pn



11.4 Comparing Cardinalities of Sets pn pn pn



11.5 The Schroder-Bernstein Theorem¨ Exercises for Chapter 11
pn pn pn pn pn pn




12. Proofs in Number Theory
pn pn pn



12.1 Divisibility Properties of Integers pn pn pn



12.2 The Division Algorithm
pn pn



12.3 Greatest Common Divisors pn pn



v


12.4 The Euclidean Algorithm
pn pn



12.5 Relatively Prime Integers pn pn



12.6 The Fundamental Theorem of Arithmetic
pn pn pn pn



12.7 Concepts Involving Sums of Divisors Exercises for Chapter 12
pn pn pn pn pn pn pn pn

, lOMoARcPSD|58847208




13. Proofs in Combinatorics
pn pn



13.1 The Multiplication and Addition Principles
pn pn pn pn



13.2 The Principle of Inclusion-Exclusion
pn pn pn



13.3 The Pigeonhole Principle
pn pn



13.4 Permutations and Combinations pn pn



13.5 The Pascal Triangle
pn pn



13.6 The Binomial Theorem
pn pn



13.7 Permutations and Combinations with Repetition Exercises for Chapter 13
pn pn pn pn pn pn pn pn




14. Proofs in Calculus
pn pn



14.1 Limits of Sequences pn pn



14.2 Infinite Series pn



14.3 Limits of Functions pn pn



14.4 Fundamental Properties of Limits of Functions pn pn pn pn pn



14.5 Continuity
14.6 Differentiability E pn



xercises for Chapter 14
pn pn pn




15. Proofs in Group Theory
pn pn pn



15.1 Binary Operations pn



15.2 Groups
15.3 Permutation Groups pn



15.4 Fundamental Properties of Groups pn pn pn



15.5 Subgroups
15.6 Isomorphic Groups Exercises for Chapter 15 pn pn pn pn pn




16. Proofs in Ring Theory (Online)
pn pn pn pn



16.1 Rings
16.2 Elementary Properties of Rings pn pn pn



16.3 Subrings
16.4 Integral Domains 16.5 Fields pn pn pn p



Exercises for Chapter 16
n pn pn pn




17. Proofs in Linear Algebra (Online)
pn pn pn pn



17.1 Properties of Vectors in 3-Space pn pn pn pn



17.2 Vector Spaces pn



17.3 Matrices
17.4 Some Properties of Vector Spaces
pn pn pn pn



17.5 Subspaces
17.6 Spans of Vectors pn pn



17.7 Linear Dependence and Independence
pn pn pn



17.8 Linear Transformations pn



17.9 Properties of Linear Transformations pn pn pn p



Exercises for Chapter 17
n pn pn pn



vi


18. Proofs with Real and Complex Numbers (Online)
pn pn pn pn pn pn



18.1 The Real Numbers as an Ordered Field
pn pn pn pn pn pn



18.2 The Real Numbers and the Completeness Axiom
pn pn pn pn pn pn



18.3 Open and Closed Sets of Real Numbers
pn pn pn pn pn pn



18.4 Compact Sets of Real Numbers pn pn pn pn



18.5 Complex Numbers pn



18.6 De Moivre’s Theorem and Euler’s Formula Exercises for Chapter 18
pn pn pn pn pn pn pn pn pn
$17.99
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
Procrastinerd
3.5
(2)

Get to know the seller

Seller avatar
Procrastinerd Harvard University
View profile
Follow You need to be logged in order to follow users or courses
Sold
4
Member since
7 months
Number of followers
0
Documents
281
Last sold
1 week ago

3.5

2 reviews

5
0
4
1
3
1
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions