100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Exam (elaborations)

An Introduction to Analysis (Classic Version, 4th Edition) by William R. Wade (2018) — A comprehensive and rigorous introduction to real analysis, presenting limits, continuity, differentiation, integration, sequences, and series with clarity and precisio

Rating
-
Sold
-
Pages
173
Grade
A+
Uploaded on
09-11-2025
Written in
2025/2026

An Introduction to Analysis (Classic Version, 4th Edition) by William R. Wade offers a clear, structured, and rigorous treatment of real analysis—the theoretical foundation of modern calculus and advanced mathematical thinking. This classic Pearson edition continues Wade’s tradition of presenting deep mathematical ideas in a way that is logical, approachable, and carefully reasoned, making it one of the most accessible introductions to analysis available. The text is intended primarily for undergraduate students majoring in mathematics or related disciplines who are transitioning from computational calculus to proof-based reasoning. Wade’s writing guides students through the process of developing precise definitions, constructing rigorous proofs, and understanding the underlying logic of limit processes and function behavior. Each chapter includes carefully chosen examples, theorems, and exercises designed to reinforce conceptual understanding while building analytical and proof-writing skills. Core topics include: The real number system and completeness property Limits and continuity of functions Differentiation and the Mean Value Theorem Sequences and series of real numbers and functions Uniform convergence and power series The Riemann integral and its properties Metric spaces and topology foundations This edition balances formal rigor with accessibility, offering extensive exercises that range from computational practice to conceptual challenges and full proofs. Wade’s step-by-step approach helps readers grasp not only “how” to perform analysis but “why” each concept matters in the broader mathematical framework. The Classic Version designation reflects its use of proven pedagogical methods—retaining the structure and examples that have made earlier editions successful—while ensuring alignment with contemporary mathematical standards. The book’s logical progression supports self-study, classroom learning, and preparation for graduate-level courses in pure or applied mathematics. For students, this book develops mathematical maturity through proof techniques and analytical reasoning. For instructors, its organized chapter structure, extensive exercises, and clear exposition make it ideal for a first course in analysis. For self-learners, Wade’s style provides an engaging path toward mastering one of the most essential branches of mathematics. Whether your goal is to deepen your understanding of calculus, prepare for advanced mathematics, or refine your logical thinking, An Introduction to Analysis (Classic Version, 4th Edition) remains a trusted and effective guide. Combining elegance, rigor, and clarity, Wade’s text helps readers achieve a profound grasp of real analysis—the foundation of mathematical reasoning itself.

Show more Read less
Institution
Simulations Of Oscillatory Systems
Course
Simulations of Oscillatory Systems











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Simulations of Oscillatory Systems
Course
Simulations of Oscillatory Systems

Document information

Uploaded on
November 9, 2025
Number of pages
173
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

Covers All 14 Chapters




SOLUTIONS TO EXERCISES

,




An Introduction to Analysis

Table of Contents
Chapter 1: The Real Number System

1.2 Ordered field axioms ................................................................... 1
1.3 The Completeness Axiom… ....................................................... 2
1.4 Mathematical Induction… ........................................................... 4
1.5 Inverse Functions and Images….................................................. 6
1.6 Countable and uncountable sets…............................................... 8


Chapter 2: Sequences in R

2.1 Limits of Sequences… ............................................................... 10
2.2 Limit Theorems.......................................................................... 11
2.3 Bolzano-Weierstrass Theorem.................................................... 13
2.4 Cauchy Sequences….................................................................. 15
2.5 Limits Supremum and Infimum.................................................. 16

Chapter 3: Functions on R

3.1 Two-Sided Limits… .................................................................. 19
3.2 One-Sided Limits and Limits at Infinity…................................... 20
3.3 Continuity… .............................................................................. 22
3.4 Uniform Continuity… ................................................................ 24

Chapter 4: Differentiability on R

4.1 The Derivative… ....................................................................... 27
4.2 Differentiability Theorem… ........................................................28
4.3 The Mean Value Theorem… ...................................................... 30
4.4 Taylor’s Theorem and l’Hôpital’s Rule… .................................. 32
4.5 Inverse Function Theorems ........................................................ 34

Chapter 5: Integrability on R

5.1 The Riemann Integral… .............................................................. 37
5.2 Riemann Sums ............................................................................ 40
5.3 The Fundamental Theorem of Calculus… ................................... 43
5.4 Improper Riemann Integration… ................................................. 46
5.5 Functions of Bounded Variation… .............................................. 49
5.6 Convex Functions…................................................................... 51




Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.

,




Chapter 6: Infinite Series of Real Numbers

6.1 Introduction….............................................................................. 53
6.2 Series with Nonnegative Terms… ............................................... 55
6.3 Absolute Convergence…............................................................. 57
6.4 Alternating Series… .................................................................... 60
6.5 Estimation of Series… ................................................................ 62
6.6 Additional Tests… ...................................................................... 63

Chapter 7: Infinite Series of Functions

7.1 Uniform Convergence of Sequences… ........................................ 65
7.2 Uniform Convergence of Series…............................................... 67
7.3 Power Series… ........................................................................... 69
7.4 Analytic Functions… ..................................................................72
7.5 Applications… ........................................................................... 74

Chapter 8: Euclidean Spaces

8.1 Algebraic Structure… ................................................................ 76
8.2 Planes and Linear Transformations… ......................................... 77
8.3 Topology of Rn ..........................................................................................................................79
8.4 Interior, Closure, and Boundary….............................................. 80

Chapter 9: Convergence in Rn

9.1 Limits of Sequences… ................................................................ 82
9.2 Heine-Borel Theorem.................................................................. 83
9.3 Limits of Functions… ................................................................. 84
9.4 Continuous Functions… .............................................................. 86
9.5 Compact Sets… .......................................................................... 87
9.6 Applications… ............................................................................ 88

Chapter 10: Metric Spaces

10.1 Introduction…............................................................................... 90
10.2 Limits of Functions… .................................................................. 91
10.3 Interior, Closure, and Boundary…................................................ 92
10.4 Compact Sets… ........................................................................... 93
10.5 Connected Sets…......................................................................... 94
10.6 Continuous Functions… ............................................................... 96
10.7 Stone-Weierstrass Theorem.......................................................... 97




Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.

,




Chapter 11: Differentiability on Rn

11.1 Partial Derivatives and Partial Integrals… ...................................... 99
11.2 The Definition of Differentiability… .............................................. 102
11.3 Derivatives, Differentials, and Tangent Planes… ........................... 104
11.4 The Chain Rule… .......................................................................... 107
11.5 The Mean Value Theorem and Taylor’s Formula… ....................... 108
11.6 The Inverse Function Theorem....................................................... 111
11.7 Optimization… ............................................................................... 114

Chapter 12: Integration on Rn

12.1 Jordan Regions… .............................................................................117
12.2 Riemann Integration on Jordan Regions… ...................................... 119
12.3 Iterated Integrals…........................................................................... 122
12.4 Change of Variables… ..................................................................... 125
12.5 Partitions of Unity… ........................................................................130
12.6 The Gamma Function and Volume .................................................. 131

Chapter 13: Fundamental Theorems of Vector Calculus

13.1 Curves….......................................................................................... 135
13.2 Oriented Curves… ........................................................................... 137
13.3 Surfaces… ....................................................................................... 140
13.4 Oriented Surfaces… ......................................................................... 143
13.5 Theorems of Green and Gauss… ...................................................... 147
13.6 Stokes’s Theorem.............................................................................. 150

Chapter 14: Fourier Series

14.1 Introduction….................................................................................. 156
14.2 Summability of Fourier Series… ...................................................... 157
14.3 Growth of Fourier Coefficients… ..................................................... 159
14.4 Convergence of Fourier Series… ..................................................... 160
14.5 Uniqueness… ................................................................................... 163




Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.
$23.99
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
BESTSELLERGRADE

Get to know the seller

Seller avatar
BESTSELLERGRADE Teachme2-tutor
View profile
Follow You need to be logged in order to follow users or courses
Sold
New on Stuvia
Member since
2 months
Number of followers
0
Documents
27
Last sold
-
TOPSCORERSOLUTIONS

On this page, you find all documents, package deals, and flashcards offered by seller TOPSCORERSOLUTIONS

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Trending documents

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions