SOLUTIONS TO EXERCISES
,
An Introduction to Analysis
Table of Contents
Chapter 1: The Real Number System
1.2 Ordered field axioms ................................................................... 1
1.3 The Completeness Axiom… ....................................................... 2
1.4 Mathematical Induction… ........................................................... 4
1.5 Inverse Functions and Images….................................................. 6
1.6 Countable and uncountable sets…............................................... 8
Chapter 2: Sequences in R
2.1 Limits of Sequences… ............................................................... 10
2.2 Limit Theorems.......................................................................... 11
2.3 Bolzano-Weierstrass Theorem.................................................... 13
2.4 Cauchy Sequences….................................................................. 15
2.5 Limits Supremum and Infimum.................................................. 16
Chapter 3: Functions on R
3.1 Two-Sided Limits… .................................................................. 19
3.2 One-Sided Limits and Limits at Infinity…................................... 20
3.3 Continuity… .............................................................................. 22
3.4 Uniform Continuity… ................................................................ 24
Chapter 4: Differentiability on R
4.1 The Derivative… ....................................................................... 27
4.2 Differentiability Theorem… ........................................................28
4.3 The Mean Value Theorem… ...................................................... 30
4.4 Taylor’s Theorem and l’Hôpital’s Rule… .................................. 32
4.5 Inverse Function Theorems ........................................................ 34
Chapter 5: Integrability on R
5.1 The Riemann Integral… .............................................................. 37
5.2 Riemann Sums ............................................................................ 40
5.3 The Fundamental Theorem of Calculus… ................................... 43
5.4 Improper Riemann Integration… ................................................. 46
5.5 Functions of Bounded Variation… .............................................. 49
5.6 Convex Functions…................................................................... 51
Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.
,
Chapter 6: Infinite Series of Real Numbers
6.1 Introduction….............................................................................. 53
6.2 Series with Nonnegative Terms… ............................................... 55
6.3 Absolute Convergence…............................................................. 57
6.4 Alternating Series… .................................................................... 60
6.5 Estimation of Series… ................................................................ 62
6.6 Additional Tests… ...................................................................... 63
Chapter 7: Infinite Series of Functions
7.1 Uniform Convergence of Sequences… ........................................ 65
7.2 Uniform Convergence of Series…............................................... 67
7.3 Power Series… ........................................................................... 69
7.4 Analytic Functions… ..................................................................72
7.5 Applications… ........................................................................... 74
Chapter 8: Euclidean Spaces
8.1 Algebraic Structure… ................................................................ 76
8.2 Planes and Linear Transformations… ......................................... 77
8.3 Topology of Rn ..........................................................................................................................79
8.4 Interior, Closure, and Boundary….............................................. 80
Chapter 9: Convergence in Rn
9.1 Limits of Sequences… ................................................................ 82
9.2 Heine-Borel Theorem.................................................................. 83
9.3 Limits of Functions… ................................................................. 84
9.4 Continuous Functions… .............................................................. 86
9.5 Compact Sets… .......................................................................... 87
9.6 Applications… ............................................................................ 88
Chapter 10: Metric Spaces
10.1 Introduction…............................................................................... 90
10.2 Limits of Functions… .................................................................. 91
10.3 Interior, Closure, and Boundary…................................................ 92
10.4 Compact Sets… ........................................................................... 93
10.5 Connected Sets…......................................................................... 94
10.6 Continuous Functions… ............................................................... 96
10.7 Stone-Weierstrass Theorem.......................................................... 97
Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.
,
Chapter 11: Differentiability on Rn
11.1 Partial Derivatives and Partial Integrals… ...................................... 99
11.2 The Definition of Differentiability… .............................................. 102
11.3 Derivatives, Differentials, and Tangent Planes… ........................... 104
11.4 The Chain Rule… .......................................................................... 107
11.5 The Mean Value Theorem and Taylor’s Formula… ....................... 108
11.6 The Inverse Function Theorem....................................................... 111
11.7 Optimization… ............................................................................... 114
Chapter 12: Integration on Rn
12.1 Jordan Regions… .............................................................................117
12.2 Riemann Integration on Jordan Regions… ...................................... 119
12.3 Iterated Integrals…........................................................................... 122
12.4 Change of Variables… ..................................................................... 125
12.5 Partitions of Unity… ........................................................................130
12.6 The Gamma Function and Volume .................................................. 131
Chapter 13: Fundamental Theorems of Vector Calculus
13.1 Curves….......................................................................................... 135
13.2 Oriented Curves… ........................................................................... 137
13.3 Surfaces… ....................................................................................... 140
13.4 Oriented Surfaces… ......................................................................... 143
13.5 Theorems of Green and Gauss… ...................................................... 147
13.6 Stokes’s Theorem.............................................................................. 150
Chapter 14: Fourier Series
14.1 Introduction….................................................................................. 156
14.2 Summability of Fourier Series… ...................................................... 157
14.3 Growth of Fourier Coefficients… ..................................................... 159
14.4 Convergence of Fourier Series… ..................................................... 160
14.5 Uniqueness… ................................................................................... 163
Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.