Hoofdstuk 7: §7.1, §7.2, §7.4, §7.5, §7.7 en §7.8
Hoofdstuk 8: §8.1 en §8.2
, INHOUDSOPGAVE
Algemene herhaling integreren/differentiëren ............................................................................................... 3
Hoofdstuk 7 ............................................................................................................................................... 4
§7.1 – Partieel integreren ..................................................................................................................................... 4
§7.2 – Goniometrische integralen ........................................................................................................................ 7
Extra: Staartdelingen ..................................................................................................................................... 11
§7.4 – Integreren van breuken met behulp van breuksplitsen ........................................................................... 12
§7.5 – Alles door elkaar ...................................................................................................................................... 18
§7.7 – Het benaderen van integralen................................................................................................................. 21
§7.8 – Oneigenlijke integralen ........................................................................................................................... 24
Hoofdstuk 8 ............................................................................................................................................. 30
§8.1 – Booglengte .............................................................................................................................................. 30
§8.2 – De oppervlakte van een omwentelingslichaam ...................................................................................... 32
2
, ALGEMENE HERHALING INTEGREREN/DIFFERENTIËREN
Goniometrie:
𝒔𝒊𝒏𝒙
x cosx (x-as) sinx (y-as) tanx =
𝒄𝒐𝒔𝒙
0 1 0 0
1 1 1 1
𝜋 √3 √3
6 2 2 3
1 1 1
𝜋 √2 √2 1
4 2 2
1 1 1
𝜋 √3 √3
3 2 2
1
𝜋 0 1 Niet gedefinieerd
2
Herhaling van afgeleiden en primitieven:
𝒇(𝒙) ⟹ 𝑭(𝒙)
𝒇(𝒙) ⟹ 𝒇′(𝒙) waarbij F(X) de primitieve van f(x) is.
𝑥 𝑛+1 1
𝑥𝑛 𝑛∙ 𝑥 𝑛−1 𝑥𝑛 = ∙ 𝑥 𝑛+1
𝑛+1 𝑛+1
mits 𝑛 ≠ −1
1 1 1 1
− −
𝑥 𝑥2 𝑥2 𝑥
sin 𝑥 cos 𝑥 sin 𝑥 −cos 𝑥
cos 𝑥 −sin 𝑥 cos 𝑥 sin 𝑥
1 1
tan 𝑥 tan 𝑥
cos2 𝑥 cos2 𝑥
𝑒𝑥 𝑒𝑥 𝑒𝑥 𝑒𝑥
𝑎𝑥
𝑎𝑥 ln 𝑎 ∙ 𝑎 𝑥 𝑎𝑥
ln 𝑎
1 1
ln |𝑥| ln |𝑥|
𝑥 𝑥
1 1
sin−1 𝑥 = arcsin 𝑥 sin−1 𝑥 = arcsin 𝑥
√1 − 𝑥2 √1 − 𝑥2
𝑥 1 1 𝑥
sin−1 ( ) sin−1 ( )
𝑎 √𝑎 2 − 𝑥 2 √𝑎 2 − 𝑥 2 𝑎
1 1
𝑡𝑎𝑛−1 𝑥 = arctan 𝑥 𝑡𝑎𝑛−1 𝑥 = arctan 𝑥
1 + 𝑥2 1 + 𝑥2
𝑥 𝑎 𝑎 𝑥
𝑡𝑎𝑛−1 ( ) 𝑡𝑎𝑛−1 ( )
𝑎 𝑎 + 𝑥2
2 2
𝑎 +𝑥 2 𝑎
𝒇(𝒙) ⟹ 𝒇′(𝒙) 𝒇(𝒙) ⟹ 𝑭(𝒙)
Kettingregel: Substitutieregel:
ℎ(𝑥) = 𝑓(𝑔(𝑥)) ∫ 𝑓 ′ (𝑔(𝑥)) ∙ 𝑔(𝑥)𝑑𝑥
ℎ′ (𝑥) = 𝑓 ′ (𝑔(𝑥)) ∙ 𝑔(𝑥) = ∫ 𝑓(𝑢)𝑑𝑢
Productregel: Partieel integreren:
ℎ(𝑥) = 𝑓(𝑥) ∙ 𝑔(𝑥) ∫ 𝑓 ′ 𝑔 + 𝑓𝑔′ 𝑑𝑥 = 𝑓𝑔
ℎ′(𝑥) = 𝑓 ′ (𝑥) ∙ 𝑔(𝑥) + 𝑓(𝑥) ∙ 𝑔′(𝑥) ∫ 𝑓 ′ 𝑔𝑑𝑥 + ∫ 𝑓𝑔′𝑑𝑥 = 𝑓𝑔
[𝑓 ∙ 𝑔]′ = 𝑓 ′ 𝑔 + 𝑓𝑔′ ∫ 𝑓𝑔′ 𝑑𝑥 = 𝑓𝑔 − ∫ 𝑓 ′ 𝑔𝑑𝑥
3
, HOOFDSTUK 7
§7.1 – PARTIEEL INTEGREREN
Elke regel in het differentiëren heeft een bijpassende regel in het integreren. Zo heeft de
substitutieregel in het integreren de kettingregel. De regel die past bij de productregel is partieel
integreren.
De productregel kennen we en die luidt: [𝑓 ∙ 𝑔]′ = 𝑓 ′ ∙ 𝑔 + 𝑓 ∙ 𝑔′
We kunnen dit herschrijven als:
(𝑓𝑔)′ = 𝑓 ′ 𝑔 + 𝑓𝑔′
𝑓𝑔′ = (𝑓𝑔)′ − 𝑓′𝑔
∫ 𝑓𝑔′ 𝑑𝑥 = ∫(𝑓𝑔)′ 𝑑𝑥 − ∫ 𝑓 ′ 𝑔 𝑑𝑥
∫ 𝑓𝑔′𝑑𝑥 = 𝑓𝑔 − ∫ 𝑓 ′ 𝑔 𝑑𝑥
∫ 𝑓𝑔′ 𝑑𝑥 = 𝑓𝑔 − ∫ 𝑓 ′ 𝑔 𝑑𝑥
Dit laatste noemen we de formule voor partieel integreren.
Calculus duidt dit aan met een andere notatie: ∫ 𝑢 𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣 𝑑𝑢. Daarin staat 𝑢 = 𝑓(𝑥) en 𝑣 =
𝑔(𝑥). De afgeleiden daarvan zijn dus 𝑑𝑢 = 𝑓 ′ (𝑥)𝑑𝑥 en 𝑑𝑣 = 𝑔′ (𝑥)𝑑𝑥. In deze samenvatting wordt de
eerste notatie aangehouden.
Voorbeeld 1:
∫ 𝑥 sin 𝑥 𝑑𝑥
Deze integraal bestaat uit een product van twee functies. We gaan dus partieel integreren. De vraag is
dan welke we kiezen voor 𝑓 en welke voor 𝑔′. Een algemene regel is dat je voor 𝑓 de functie kiest die
makkelijker wordt als je hem differentieert.
𝑓=𝑥 𝑔 = −cos 𝑥
′
𝑓 =1 𝑔′ = sin 𝑥
∫ 𝑥 sin 𝑥 𝑑𝑥 = 𝑥 ∙ (− cos 𝑥) − ∫ 1 ∙ (− cos 𝑥)𝑑𝑥
= −𝑥 cos 𝑥 + ∫ cos 𝑥 𝑑𝑥
= −𝑥 cos 𝑥 + sin 𝑥 + 𝐶
Voorbeeld 1.a:
∫ 𝑥 cos 𝑥 𝑑𝑥
𝑓=𝑥 𝑔 = sin 𝑥
𝑓′ = 1 𝑔′ = cos 𝑥
∫ 𝑥 cos 𝑥 𝑑𝑥 = 𝑥 sin 𝑥 − ∫ 1 ∙ sin 𝑥 𝑑𝑥
= 𝑥 sin 𝑥 − − cos 𝑥 + 𝐶
= 𝑥 sin 𝑥 + cos 𝑥 + 𝐶
We kunnen ons antwoord altijd controleren door het opnieuw te differentiëren. Als we dan uitkomen
op hetgeen waar we mee begonnen, dan is het integreren goed gegaan.
Het doel van partieel integreren is om een gemakkelijkere integraal te krijgen dan degene waar we
mee begonnen. Dat is dus ook waarom we de functie voor 𝑓 kiezen die makkelijker wordt met
differentiëren. Achter het integraal-teken komt deze namelijk terug: ∫ 𝑓 ′ 𝑔 𝑑𝑥. Dan is het fijn als 𝑓 ′
iets makkelijks is. Dit geldt zo lang 𝑔′ gemakkelijk geïntegreerd kan worden naar 𝑔.
4