First Course inAbstractAlgebra A
n n n n n n n
n 8th EditionbyJohnB.Fraleigh
n n n n n n n n All
n ChaptersFullCompleten n
, CONTENTS
1. Sets and Relations
n n 1
I. Groups and Subgroups n n
2. Introduction and Examples 4 n n
3. Binary Operations 7 n
4. Isomorphic Binary Structures 9 n n
5. Groups 13
6. Subgroups 17
7. Cyclic Groups 21
n n
8. Generators and Cayley Digraphs 24 n n n
II. Permutations, Cosets, and Direct Products n n n n
9. Groups of Permutations 26 n n
10. Orbits, Cycles, and the Alternating Groups n n n n n
30
11. Cosets and the Theorem of Lagrange
n 34 n n n n
12. Direct Products and Finitely Generated Abelian Groups 37
n n n n n n
13. Plane Isometries 42
n
III. Homomorphisms and Factor Groups n n n
14. Homomorphisms 44
15. Factor Groups 49 n
16. Factor-Group Computations and Simple Groups n n n n 53
17. Group Action on a Set 58
n n n n
18. Applications of G-Sets to Counting 61 n n n n
IV. Rings and Fields n n
19. Rings and Fields
n 63 n
20. Integral Domains 68 n
21. Fermat’s and Euler’s Theorems 72 n n n
22. The Field of Quotients of an Integral Domain
n 74 n n n n n n
23. Rings of Polynomials 76
n n
24. Factorizationof Polynomials over a Field 79 n n n n n
25. Noncommutative Examples 85 n
26. Ordered Rings and Fields 87 n n n
V. Ideals and Factor Rings n n n
27. Homomorphisms and Factor Rings n n n 89
28. Prime and Maximal Ideals
n 94 n n
,29. Gröbner Bases for Ideals
n n n 99
, VI. Extension Fields n
30. Introduction to Extension Fields n n n 103
31. Vector Spaces 107 n
32. Algebraic Extensions 111 n
33. Geometric Constructions 115 n
34. Finite Fields 116 n
VII. Advanced Group Theory n n
35. IsomorphismTheorems 117 n
36. Series of Groups 119
n n
37. Sylow Theorems 122 n
38. Applications of the Sylow Theory n n n n 124
39. Free Abelian Groups 128
n n
40. Free Groups 130
n
41. Group Presentations 133 n
VIII. Groups in Topology n n
42. Simplicial Complexes and Homology Groups 136 n n n n
43. Computations of Homology Groups 138 n n n
44. More Homology Computations and Applications
n 140 n n n
45. Homological Algebra 144 n
IX. Factorization
46. Unique Factorization Domains 148 n n
47. Euclidean Domains 151 n
48. Gaussian Integers and Multiplicative Norms n n n n 154
X. Automorphisms and Galois Theory n n n
49. Automorphisms of Fields 159 n n
50. The Isomorphism Extension Theorem
n n n 164
51. Splitting Fields 165 n
52. SeparableExtensions 167 n
53. Totally Inseparable Extensions
n 171 n
54. Galois Theory 173 n
55. IllustrationsofGalois Theory 176 n n n
56. CyclotomicExtensions 183 n
57. Insolvability of the Quintic 185 n n n
APPENDIX Matrix Algebra n n n n 187
iv