Exam exercises Mathematics for Premaster FINAL
This is a preview of the extra exam exercises that you can use to prepare for your final. I
have successfully passed the premaster in 2019 myself, and since I received a 9 on
mathematics, I tutored a bunch of students in 2020. For a crash course, I created these
30 exercises with extensive elaboration of the answers myself. This might be very
helpful, because you haven’t practiced with these before.
Please note that copyright belongs to the creator of this document.
It is forbidden to freely distribute this file.
If you have bought this document, you can skip the first 6 pages (until ‘END OF
PREVIEW’) as these first pages are adapted with black lines to serve the preview.
Part I
1. Consider a producer with cost function 𝐶(𝑦) = 2𝑦 3 − 6𝑦 2 + 12𝑦. Determine the
minimum price at which the firm produces (i.e., does not make a loss in the
optimum).
2. Determine the supply function of the producer from question 1.
3. Solve the following constrained extremum problem:
.
maximize 𝑧(𝑥, 𝑦) = 𝑥𝑦 + 𝑦 2
subject to 𝑥 + 3𝑦 = 32
where 𝑥 ≥ 0 and 𝑦 ≥ 0
4. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX XXXX XXX XXXX XX
XXXXXXXXXXX XXX XXXX XXXXX XXXX
5. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX
,6. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX XXXX XXX XXXX XX
XXXXXXXXXXX XXX XXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX
7. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX
8. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX XXXX XXX XXXX XX
XXXXXXXXXXX XXX XXXX XXXXX XXXX
9. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX
10. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX XXXX XXX XXXX XX
XXXXXXXXXXX XXX XXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX
11. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX
12. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX XXXX XXX XXXX XX
XXXXXXXXXXX XXX XXXX XXXXX XXXX
13. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX
14. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX XXXX XXX XXXX XX
XXXXXXXXXXX XXX XXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX
15. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX
,Part II
16. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX XXXX XXX XXXX XX
XXXXXXXXXXX XXX XXXX XXXXX XXXX
17. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX
18. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX XXXX XXX XXXX XX
XXXXXXXXXXX XXX XXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX
19. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX
20. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX XXXX XXX XXXX XX
XXXXXXXXXXX XXX XXXX XXXXX XXXX
21. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX
22. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX XXXX XXX XXXX XX
XXXXXXXXXXX XXX XXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX
23. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX
24. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX XXXX XXX XXXX XX
XXXXXXXXXXX XXX XXXX XXXXX XXXX
,25. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX
26. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX XXXX XXX XXXX XX
XXXXXXXXXXX XXX XXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX
27. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX
28. Consider the system of linear equations with corresponding extended
coefficient matrix.
.
1 2 1 | 8
[ 0 5 −4 | 10 ].
2
0 −5 𝑡 | 𝑡−8
.
Determine all 𝑡 such that the system is inconsistent.
1 6 4
29. Determine, if possible, the inverse 𝐸 −1 of the matrix 𝐸 = [ −1 3 5 ].
2 3 −1
30. Solve the following maximalization problem:
.
maximize 𝑧(𝑥, 𝑦) = 8𝑥 + 𝑦
such that 4𝑥 + 12𝑦 ≤ 80
2𝑥 + 2𝑦 ≤ 20
𝑥≤7
𝑥 ≥ 0 and 𝑦 ≥ 0
,
,
This is a preview of the extra exam exercises that you can use to prepare for your final. I
have successfully passed the premaster in 2019 myself, and since I received a 9 on
mathematics, I tutored a bunch of students in 2020. For a crash course, I created these
30 exercises with extensive elaboration of the answers myself. This might be very
helpful, because you haven’t practiced with these before.
Please note that copyright belongs to the creator of this document.
It is forbidden to freely distribute this file.
If you have bought this document, you can skip the first 6 pages (until ‘END OF
PREVIEW’) as these first pages are adapted with black lines to serve the preview.
Part I
1. Consider a producer with cost function 𝐶(𝑦) = 2𝑦 3 − 6𝑦 2 + 12𝑦. Determine the
minimum price at which the firm produces (i.e., does not make a loss in the
optimum).
2. Determine the supply function of the producer from question 1.
3. Solve the following constrained extremum problem:
.
maximize 𝑧(𝑥, 𝑦) = 𝑥𝑦 + 𝑦 2
subject to 𝑥 + 3𝑦 = 32
where 𝑥 ≥ 0 and 𝑦 ≥ 0
4. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX XXXX XXX XXXX XX
XXXXXXXXXXX XXX XXXX XXXXX XXXX
5. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX
,6. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX XXXX XXX XXXX XX
XXXXXXXXXXX XXX XXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX
7. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX
8. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX XXXX XXX XXXX XX
XXXXXXXXXXX XXX XXXX XXXXX XXXX
9. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX
10. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX XXXX XXX XXXX XX
XXXXXXXXXXX XXX XXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX
11. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX
12. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX XXXX XXX XXXX XX
XXXXXXXXXXX XXX XXXX XXXXX XXXX
13. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX
14. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX XXXX XXX XXXX XX
XXXXXXXXXXX XXX XXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX
15. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX
,Part II
16. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX XXXX XXX XXXX XX
XXXXXXXXXXX XXX XXXX XXXXX XXXX
17. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX
18. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX XXXX XXX XXXX XX
XXXXXXXXXXX XXX XXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX
19. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX
20. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX XXXX XXX XXXX XX
XXXXXXXXXXX XXX XXXX XXXXX XXXX
21. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX
22. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX XXXX XXX XXXX XX
XXXXXXXXXXX XXX XXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX
23. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX
24. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX XXXX XXX XXXX XX
XXXXXXXXXXX XXX XXXX XXXXX XXXX
,25. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX
26. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX XXXXXX XXXXXXXXXXX XXX XXXX XXX XXXX XX
XXXXXXXXXXX XXX XXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX
27. XXXX XXX XX XXXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXX
XXXXXX XXXX XXXXXXXXX
28. Consider the system of linear equations with corresponding extended
coefficient matrix.
.
1 2 1 | 8
[ 0 5 −4 | 10 ].
2
0 −5 𝑡 | 𝑡−8
.
Determine all 𝑡 such that the system is inconsistent.
1 6 4
29. Determine, if possible, the inverse 𝐸 −1 of the matrix 𝐸 = [ −1 3 5 ].
2 3 −1
30. Solve the following maximalization problem:
.
maximize 𝑧(𝑥, 𝑦) = 8𝑥 + 𝑦
such that 4𝑥 + 12𝑦 ≤ 80
2𝑥 + 2𝑦 ≤ 20
𝑥≤7
𝑥 ≥ 0 and 𝑦 ≥ 0
,
,