First Course in Abstract
k k k
Algebra A 8th Edition byJohn
k k k k k k
B.Fraleigh
k k k k
k All Chapters FullComplete
k k k
, CONTENTS
1. Sets and Relations 1
k k
I. Groups and Subgroups k k
2. Introduction and Examples 4 k k
3. Binary Operations 7 k
4. Isomorphic Binary Structures 9 k k
5. Groups 13
6. Subgroups 17
7. Cyclic Groups 21
k k
8. Generators and Cayley Digraphs 24 k k k
II. Permutations, Cosets, and Direct Products k k k k
9. Groups of Permutations 26 k k
10. Orbits, Cycles, and the Alternating Groups k k k k k
30
11. Cosets and the Theorem of Lagrange 34
k k k k k
12. Direct Products and Finitely Generated Abelian Groups 37
k k k k k k
13. Plane Isometries 42
k
III. Homomorphisms and Factor Groups k k k
14. Homomorphisms 44
15. Factor Groups 49 k
16. Factor-Group Computations and Simple Groups 53 k k k k
17. Group Action on a Set 58
k k k k
18. Applications of G-Sets to Counting 61 k k k k
IV. Rings and Fields k k
19. Rings and Fields 63
k k
20. Integral Domains 68 k
21. Fermat’s and Euler’s Theorems 72 k k k
22. The Field of Quotients of an Integral Domain 74
k k k k k k k
23. Rings of Polynomials 76
k k
24. Factorizationof Polynomialsovera Field 79 k k k k k
25. Noncommutative Examples 85 k
26. Ordered Rings and Fields 87 k k k
V. Ideals and Factor Rings k k k
27. Homomorphisms and Factor Rings 89 k k k
28. Prime and Maximal Ideals 94
k k k
,29. Gröbner Bases for Ideals 99
k k k
, VI. Extension Fields k
30. Introduction to Extension Fields 103 k k k
31. Vector Spaces 107 k
32. Algebraic Extensions 111 k
33. Geometric Constructions 115 k
34. Finite Fields 116 k
VII. Advanced Group Theory k k
35. IsomorphismTheorems 117 k
36. Series of Groups 119
k k
37. Sylow Theorems 122 k
38. Applications of the Sylow Theory 124 k k k k
39. Free Abelian Groups 128
k k
40. Free Groups 130
k
41. Group Presentations 133k
VIII. Groups in Topology k k
42. Simplicial Complexes and Homology Groups 136 k k k k
43. Computations of Homology Groups 138 k k k
44. More Homology Computations and Applications 140
k k k k
45. Homological Algebra 144 k
IX. Factorization
46. Unique Factorization Domains 148 k k
47. Euclidean Domains 151 k
48. Gaussian Integers and Multiplicative Norms 154 k k k k
X. Automorphisms and Galois Theory k k k
49. Automorphisms of Fields 159 k k
50. The Isomorphism Extension Theorem 164
k k k
51. Splitting Fields 165 k
52. SeparableExtensions 167 k
53. TotallyInseparable Extensions 171
k k
54. Galois Theory 173 k
55. Illustrationsof Galois Theory 176 k k k
56. CyclotomicExtensions 183 k
57. Insolvability of the Quintic 185 k k k
APPENDIX Matrix Algebra k k k k 187
iv