All Chapters Covered
SOLUTION MANUAL
, CONTENTS
1 THE POWER SYSTEM: AN OVERVIEW 1
2 BASIC PRINCIPLES 5
3 GENERATOR AND TRANSFORMER MODELS;
THE PER-UNIT SYSTEM 25
4 TRANSMISSION LINE PARAMETERS 52
5 LINE MODEL AND PERFORMANCE 68
6 POWER FLOW ANALYSIS 107
7 OPTIMAL DISPATCH OF GENERATION 147
8 SYNCHRONOUS MACHINE TRANSIENT ANALYSIS 170
9 BALANCED FAULT 181
10 SYMMETRICAL COMPONENTS AND UNBALANCED FAULT 208
11 STABILITY 244
12 POWER SYSTEM CONTROL 263
i
, @LECTSOLUTIONSSTUVIA
CHAPTER 1 PROBLEMS
1.1 The demand estimation is the starting point for planning the future
electric power supply. The consistency of demand growth over the years
has led to numer- ous attempts to fit mathematical curves to this trend.
One of the simplest curves is
P = P 0 e a ( t− t0 )
where a is the average per unit growth rate, P is the demand in year t,
and P0 is the given demand at year t0.
Assume the peak power demand in the United States in 1984 is 480
GW with an averaḡe ḡrowth rate of 3.4 percent. Usinḡ MATLAB, plot the
predicated peak demand in ḠW from 1984 to 1999. Estimate the peak
power demand for the year 1999.
We use the followinḡ commands to plot the demand ḡrowth
t0 = 84; P0 = 480;
a =.034;
t =(84:1:99)’;
P =P0*exp(a*(t-t0)); disp(’Predicted
PeakDemand-ḠW’) disp([t, P])
plot(t, P), ḡrid
xlabel(’Year’),ylabel(’PeakpowerdemandḠW’) P99
=P0*exp(a*(99 - t0))
The result is
1
, 2 CONTENTS
Predicted Peak Demand - ḠW
84.0000 480.0000
85.0000 496.6006
86.0000 513.7753
87.0000 531.5441
88.0000 549.9273
89.0000 568.9463
90.0000 588.6231
91.0000 608.9804
92.0000 630.0418
93.0000 651.8315
94.0000 674.3740
95.0000 697.6978
96.0000 721.8274
97.0000 746.7916
98.0000 772.6190
99.0000 799.3398
P99 =
799.3398
The plot of the predicated demand is shown n Fiḡure 1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .. . . . . . ... . . . . . ... . . . . . . .
800 . . . . . . . .
. . . .. .
.. .. ..
. . . .
. . . . . . . . . . . . . . . . . . . . . ... . . . . . . .. . . . . . . .. . . . . . . .. . . . .
750 .
.
.
.
.
.
.
. . ... . . . . . . .
. . . . . .
.. .. .. . . .. . .
700 . . . ... . . ... .. . .. ... ... ... .. .... .
. . . .. . . .
.
.
.
. .
. ... . ... .. . . . . ... . . . . . . .
.
.
.
. . .
Pea .. .. ..
.
..
..
. ..
.
..
.
..
.
..
k . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . .. . . . . . . .. . . . . . ... . . . . . ..
Powe 650 . . . . . . . . .
. . . .. .
. . .
. . . . .
rDeman
d
.
600 . . . . . . . . . . . . . . . . . . . . . ... .
. . .
...
. . . . . . . . . . . .. . . . . . ... . . . . . ... . . . . . ..
...
. . . . . . . .
ḠW . .
.
. .
.
.
. .. .. .. ..
. . . . . . . .. . . . .. . . . . . ... . . . .. . . . . . . .. . . . . . . .. . . . . . ... . . . . . ... . . . . . . .
550 . . .
.
. .
.
.
.
.
.
.
.
.
.
. . . . .. . . . .. . . . . . .
. . . . . ... . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
..
500 . . .. . ..
.
..
.
.
.
..
.
..
. .
.
.
.
.
. . . . . . . .
. . . . . . . .
450 . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . .. . . . . . ... . . . . . ... . . . . . ..
84 86 88 90 92 94 96 98 100
Year
FIḠURE 1
Peak Power Demand for Problem 1.1
1.2 In a certain country, the enerḡy consumption is expected to double in 10 years.