100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

CFA Level 1 - 101 Must Knows Exam questions with verified detailed answers

Rating
-
Sold
-
Pages
95
Grade
A+
Uploaded on
29-10-2025
Written in
2025/2026

CFA Level 1 - 101 Must Knows Exam questions with verified detailed answers

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Course

Document information

Uploaded on
October 29, 2025
Number of pages
95
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

CFA Level 1 - 101 Must Knows Exam ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




questions with verified detailed answers ||\\//|| ||\\//|| ||\\//|| ||\\//||




Addition Rule of Probability ||\\//|| ||\\//|| ||\\//||




ADDITION: P(A or B) = P(A) + P(B) - P(AB) ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




Roy's Safety First Criterion
||\\//|| ||\\//|| ||\\//||




Safety First Ratio = (E(R) - R)ₜ / σ
||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




Larger ratio is better ||\\//|| ||\\//|| ||\\//||




If (R)ₜ is risk free rate, then it becomes Sharpe Ratio
||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




Sharpe Ratio ||\\//||




Sharpe Ratio = (E(R) - RFR) / σ ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




Larger ratio is better ||\\//|| ||\\//|| ||\\//||




If (Rt) is higher than RFR, then it becomes Safety First Ratio
||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




Central Limit Theorem ||\\//|| ||\\//||

,If we take samples of a population, with a large enough sample size, the distribution of all
||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




sample means is normal with: ||\\//|| ||\\//|| ||\\//|| ||\\//||




- A mean equal to the population mean
||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




- A variance equal to the population variance divided by sample size (σ² / n)
||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




Standard Error of Sample Mean ||\\//|| ||\\//|| ||\\//|| ||\\//||




σ / n^½ ||\\//|| ||\\//||




Binomial Probability ||\\//||




One of two possible outcomes (i.e. success/failure)
||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




Possible outcomes can be demonstrated in binomial tree ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




Use "nCr" on calculator to solve: ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




nCr = P(success)^x * P(failure)^(n-x) ||\\//|| ||\\//|| ||\\//|| ||\\//||




P - Value ||\\//|| ||\\//||




Based on a calculated test statistic, rather than a significance level (which is chosen)
||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




p-value = smallest significance level at which an analyst can reject the null hypothesis ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||

,one-tailed test - "less than or equal to" ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




two-tailed test - "equal to" ||\\//|| ||\\//|| ||\\//|| ||\\//||




Cumulative Distribution Function ||\\//|| ||\\//||




Gives the probability that a random variable will have an outcome less than or equal to a
||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




specific value (represented by F(x)) ||\\//|| ||\\//|| ||\\//|| ||\\//||




F(x) = probability of an outcome less than or equal to x
||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




Standard normal table (z) shows cumulative probabilities ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




Effective Annual Yield ||\\//|| ||\\//||




EAY = (1 + (i/n))^n - 1
||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




Stated Rate = (EAY^(1/n) - 1) * n ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




Continuous Compounding ||\\//||




ln(EAY) = continuously compounded stated rate ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




e^(continuously compounded stated rate) = EAY ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




Type I Error ||\\//|| ||\\//||




Incorrectly rejecting a true null hypothesis ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||

, (convicting an innocent person is Type I) ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




Type II Error ||\\//|| ||\\//||




Failure to reject a false null hypothesis ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




(failure to convict a guilty person is Type II) ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




Significance Level / Power of a Test ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




Significance Level = Probability of Type I ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




Power of a Test = (1 - Probability of Type I) ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




Covariance (Probability Model) ||\\//|| ||\\//||




Covariance of random variables A and B from probability model ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




On the calculator:
||\\//|| ||\\//||




1) Enter returns for set A and joint probabilities for AB; find mean A
||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




2) Enter returns for set B and joint probabilities for AB; find mean B
||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




3) Multiply each joint probability AB by each set's returns minus means
||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




(ex: P(AB1)(A1 - Mean A)(B1 - Mean B) + P(AB2)(A2 - Mean A)(B2 - Mean B) + ... +
||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




P(ABn)(An - Mean A)(Bn - Mean B)) ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||




4) The summed total is your covariance
||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//|| ||\\//||

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Ruiz Liberty University
Follow You need to be logged in order to follow users or courses
Sold
73
Member since
1 year
Number of followers
1
Documents
11341
Last sold
2 days ago
Top-Quality Study Materials for Success – Ace Your Exams with Expert Resources!

Access high-quality study materials to help you excel in your exams. Get notes, summaries, and guides tailored to your courses!

3.3

7 reviews

5
3
4
0
3
2
2
0
1
2

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions