100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

A Complete Solution Guide to Principles of Mathematical Analysis (2025/2026 Edition)

Rating
-
Sold
-
Pages
413
Grade
A+
Uploaded on
29-10-2025
Written in
2025/2026

This document is a fully worked, step-by-step solution manual to the classic textbook Principles of Mathematical Analysis by Walter Rudin, based on the Guide by Kit-Wing Yu. It covers all 285 exercises from Rudin’s text with detailed explanations, supplemental lemmas, illustrative figures, and additional commentary to enhance clarity. Ideal for undergraduate and graduate students, instructors, and self-learners who wish to deepen their understanding of real analysis through worked examples. Key features include: Complete proofs for every exercise, showing each intermediate step and theorem used Additional lemmas and remarks where Rudin’s statements require background Illustrations and explanatory tables to clarify difficult concepts Structured sections to improve readability and pedagogical flow Use this guide as a companion to Rudin’s Principles of Mathematical Analysis to check your own solutions, find alternate approaches, or as a teaching aid.

Show more Read less
Institution
Foundations Of Real Analysis
Course
Foundations of Real Analysis











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Foundations of Real Analysis
Course
Foundations of Real Analysis

Document information

Uploaded on
October 29, 2025
Number of pages
413
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Content preview

Covers All 11 Chapters

,List of Figures


2.1 The neighborhoods Nh(q) and Nr(p) ................................................................................................... 13
2.2 Convex sets and nonconvex sets ........................................................................................................ 23
2.3 The sets Nh(x ), N
2
h (x ) and Nq m (x k) ............................................................................................... 25

2.4 The construction of the shrinking sequence ................................................................................... 29

3.1 The Cantor set.......................................................................................................................................... 49

4.1 The graph of g on [an, bn]. ...................................................................................................................... 59
4.2 The sets E and Ini .................................................................................................................................. 63
4.3 The graphs of [x] and√(x)....................................................................................................................... 70
4.4 An example for α = 2 and n = 5........................................................................................................ 72
4.5 The distance from x ∈ X to E.............................................................................................................. 74
4.6 The graph of a convex function f ....................................................................................................... 76
4.7 The positions of the points p, p + κ, q — κ and q............................................................................ 77

5.1 The zig-zag path of the process in (c)............................................................................................. 105
5.2 The zig-zag path induced by the function f in Case (i) ....................................................... 108
5.3 The zig-zag path induced by the function g in Case (i) ........................................................ 109
5.4 The zig-zag path induced by the function f in Case (ii)...................................................... 109
5.5 The zig-zag path induced by the function g in Case (ii) ........................................................ 110
5.6 The geometrical interpretation of Newton’s method ...................................................................... 111

8.1 The graph of the continuous function y = f (x) = (π — |x|)2 on [—π, π]. ................................ 186
8.2 The graphs of the two functions f and g ....................................................................................... 197
8.3 A geometric proof of 0 < sin x ≤ x on (0 2
, π ]. ................................................................................ 199
8.4 The graph of y = | sin x| ......................................................................................................................... 199
8.5 The winding number of γ around an arbitrary point p............................................................. 202
8.6 The geometry of the points z, f (z) and g(z) ................................................................................ 209

9.1 An example of the range K of f ........................................................................................................ 219
9.2 The set of q ∈ K such that (∇f3)(f—1(q)) = 0 .............................................................................. 220
9.3 Geometric meaning of the implicit function theorem ................................................................. 232
9.4 The graphs around the four points................................................................................................... 233
9.5 The graphs around (0, 0) and (1, 0) ................................................................................................. 236
9.6 The graph of the ellipse X2 + 4Y 2 = 1.......................................................................................... 239
9.7 The definition of the function ϕ(x, t) ................................................................................................ 243
9.8 The four regions divided by the two lines αx1 + βx2 = 0 and αx1 — βx2 = 0.................... 252

10.1 The compact convex set H and its boundary ∂H....................................................................... 256
10.2 The figures of the sets Ui, Wi and Vi ....................................................................................................................................... 264
10.3 The mapping T : I2 → H ...................................................................................................................... 269
10.4 The mapping T : A → D ....................................................................................................................... 270
10.5 The mapping T : A◦ → D0......................................................................................................................................................................... 271
10.6 The mapping T : S → Q ....................................................................................................................... 277

vii

,List of Figures viii

10.7 The open sets Q0.1, Q0.2 and Q ........................................................................................................... 278
10.8 The mapping T : I3 → Q3. ..................................................................................................................... 280
10.9 The mapping τ1 : Q2→ I2 ......................................................................................................................................................................... 288
10.10 The mapping τ2 : Q2→ I2 ......................................................................................................................................................................... 289
10.11 The mapping τ2 : Q2→ I2 ......................................................................................................................................................................... 289
10.12 The mapping Φ : D→ R2 \ {0} . ........................................................................................................... 296
10.13 The spherical coordinates for the point Σ(u, v) ......................................................................... 300
10.14 The rectangles D and E ..................................................................................................................... 302
10.15 An example of the 2-surface S and its boundary ∂S.............................................................. 304
10.16 The unit disk U as the projection of the unit ball V.................................................................. 325
10.17 The open cells U and V ........................................................................................................................ 326
10.18 The parameter domain D ..................................................................................................................... 332
10.19 The figure of the Möbius band ............................................................................................................ 333
10.20 The “geometric” boundary of M ......................................................................................................... 335

11.1 The open square Rδ((p, q)) and the neighborhood N√2δ ((p, q)) ............................................ 350

B.1 The plane angle θ measured in radians .......................................................................................... 365
B.2 The solid angle Ω measured in steradians .................................................................................... 366
B.3 A section of the cone with apex angle 2θ ...................................................................................... 366

, List of Tables


6.1 The number of intervals & end-points and the length of each interval for each En............ 121

9.1 Expressions of x around four . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
points.
9.2 Expressions of y around four . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
points.




ix
$19.49
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
SirMaina

Get to know the seller

Seller avatar
SirMaina CHAMBERLAIN COLLEGE OF NURSING
View profile
Follow You need to be logged in order to follow users or courses
Sold
2
Member since
2 months
Number of followers
1
Documents
243
Last sold
2 weeks ago
SIR MAINA – EXAMS, TEST BANKS, SOLUTION MANUALS &amp; STUDY GUIDES ✅

Sir Maina – Exams, Test Banks, Solution Manuals &amp; Study Guides Welcome to Sir Maina’s Academic Hub, your one-stop destination for premium study materials. This page is dedicated to providing students with exams, test banks, solution manuals, eBooks, summaries, and all other academic resources designed to make learning easier and more effective.

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions