100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Advanced Linear Algebra (2016) – Solutions Manual – Cooperstein

Rating
-
Sold
-
Pages
134
Grade
A+
Uploaded on
28-10-2025
Written in
2025/2026

INSTANT PDF DOWNLOAD — Complete Solutions Manual for Advanced Linear Algebra, 2nd Edition (2016) by Cooperstein. Covers all 13 chapters with step-by-step worked solutions, proofs, and annotations: vector spaces, linear maps, matrices, rank–nullity, eigenvalues/eigenvectors, diagonalization, Jordan & rational canonical forms, minimal & characteristic polynomials, invariant subspaces, inner-product/orthogonality, Gram–Schmidt & QR, spectral theorem, bilinear & quadratic forms, and applications. Perfect for homework checking, exam prep, and self-study for upper-division/graduate linear algebra. advanced linear algebra solutions, Cooperstein solutions manual, linear algebra step by step, Jordan canonical form problems, spectral theorem exercises, eigenvalues and eigenvectors solved, diagonalization practice, Gram Schmidt QR solutions, inner product space problems, bilinear forms solutions, quadratic forms reduction, characteristic polynomial problems, minimal polynomial exercises, invariant subspace practice, rational canonical form solved, graduate linear algebra workbook, matrix theory solutions pdf, proofs in linear algebra, homework solutions upper division, self study linear algebra

Show more Read less
Institution
Calculus
Course
Calculus











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Calculus
Course
Calculus

Document information

Uploaded on
October 28, 2025
Number of pages
134
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

  • diagonalization practice

Content preview

ALL 13 CHAPTERS COVERED




SOLUTIONS MANUAL

, Contents

1 Vector Spaces 1
1.1 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Space Fn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Introduction to Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Subspaces of Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Span and Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Bases and Finite Dimensional Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Bases of Infinite Dimensional Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.8 Coordinate Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Linear Transformations 17
2.1 Introduction to Linear Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Range and Kernel of a Linear Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Correspondence and Isomorphism Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Matrix of a Linear Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 The Algebra of L(V, W ) and Mmn (F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Invertible Transformations and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Polynomials 29
3.1 The Algebra of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Roots of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Theory of a Single Linear Operator 33
4.1 Invariant Subspaces of an Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Cyclic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Maximal Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Indecomposable Linear Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5 Invariant Factors and Elementary Divisors of a Linear Operator . . . . . . . . . . . . . . . . . . . . . 38
4.6 Canonical Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.7 Linear Operators on Real and Complex Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 42




K23692_SM_Cover.indd 5 02/06/

, iv CONTENTS


5 Inner Product Spaces 45
5.1 Inner Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 The Geometry of Inner Product Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Orthonormal Sets and the Gram-Schmidt Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Orthogonal Complements and Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5 Dual Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.6 Adjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.7 Normed Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Linear Operators on Inner Product Spaces 59
6.1 Self-Adjoint Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Spectral Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Normal Operators on Real Inner Product Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.4 Unitary and Orthogonal Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.5 Positive Operators, Polar Decomposition and Singular Value Decomposition . . . . . . . . . . . . . . 67

7 Trace and Determinant of a Linear Operator 71
7.1 Trace of a Linear Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.3 Uniqueness of the Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8 Bilinear Maps and Forms 81
8.1 Basic Properties of Bilinear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.2 Symplectic Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.3 Quadratic Forms and Orthogonal Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.4 Orthogonal Space, Characteristic Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.5 Real Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9 Sesquilinear Forms and Unitary Spaces 93
9.1 Basic Properties of Sesquilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
9.2 Unitary Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

10 Tensor Products 97
10.1 Introduction to Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
10.2 Properties of Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
10.3 The Tensor Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
10.4 The Symmetric Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10.5 Exterior Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.6 Clifford Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107




K23692_SM_Cover.indd 6 02/06/

, CONTENTS v


11 Linear Groups and Groups of Isometries 109
11.1 Linear Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
11.2 Symplectic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
11.3 Orthogonal Groups, Characteristic Not Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.4 Unitary Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

12 Additional Topics 117
12.1 Operator and Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
12.2 Moore-Penrose Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
12.3 Nonnegative Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
12.4 Location of Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
12.5 Functions of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

13 Applications of Linear Algebra 125
13.1 Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
13.2 Error Correcting Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
13.3 Ranking Web Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129




K23692_SM_Cover.indd 7 02/06/

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
TestBanksStuvia Chamberlain College Of Nursng
View profile
Follow You need to be logged in order to follow users or courses
Sold
2682
Member since
2 year
Number of followers
1194
Documents
1925
Last sold
20 hours ago
TESTBANKS & SOLUTION MANUALS

if in any need of a Test bank and Solution Manual, fell free to Message me or Email donc8246@ gmail . All the best in your Studies

3.9

288 reviews

5
158
4
43
3
30
2
20
1
37

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions