100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

“Advanced Real Analysis: Solution Companion for Principles of Mathematical Analysis (Yu)”

Rating
-
Sold
-
Pages
389
Grade
A+
Uploaded on
27-10-2025
Written in
2025/2026

This comprehensive solution companion unlocks the full potential of the foundational text Principles of Mathematical Analysis (Yu) by providing detailed, step-by-step worked solutions to every exercise, along with explanatory annotations, theorem-references and proof-guidance. Ideal for advanced undergraduate or first-year graduate students in mathematics, it streamlines your study of real analysis and equips you to master rigorous proof techniques, sequences and series, continuity, differentiability, integration and more. Whether you’re preparing for exams, tackling assignments, or aiming for deeper conceptual insight, this guide is your trusted resource for clarity and confidence in one of the most demanding mathematics courses.

Show more Read less
Institution
MATH 4010
Course
MATH 4010











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
MATH 4010
Course
MATH 4010

Document information

Uploaded on
October 27, 2025
Number of pages
389
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

Covers All 11 Chapters

,List of Figures


2.1 The neighborhoods Nh(q) and Nr(p) .....................................................................................................................13
2.2 Convex sets and nonconvex sets ............................................................................................................................. 23
2.3 The sets Nh(x), N h2(x) and Nqm (xk) .................................................................................................................. 25
2.4 The construction of the shrinking sequence .......................................................................................................... 29

3.1 The Cantor set .............................................................................................................................................................49

4.1 The graph of g on [an, bn]........................................................................................................................................ 59
4.2 The sets E and Ini . ....................................................................................................................................................63
4.3 The graphs of [x] and√(x) ........................................................................................................................................ 70
4.4 An example for α = 2 and n = 5.................................................................................................................. 72
4.5 The distance from x ∈ X to E.................................................................................................................................74
4.6 The graph of a convex function f.......................................................................................................................... 76
4.7 The positions of the points p, p + κ, q — κ and q ........................................................................................... 77

5.1 The zig-zag path of the process in (c)...............................................................................................................105
5.2 The zig-zag path induced by the function f in Case (i)......................................................................... 108
5.3 The zig-zag path induced by the function g in Case (i).......................................................................... 109
5.4 The zig-zag path induced by the function f in Case (ii) ...................................................................... 109
5.5 The zig-zag path induced by the function g in Case (ii) ........................................................................ 110
5.6 The geometrical interpretation of Newton’s method ......................................................................................111

8.1 The graph of the continuous function y = f (x) = (π — |x|)2 on [—π, π]. ........................................ 186
8.2 The graphs of the two functions f and g ........................................................................................................ 197
8.3 A geometric proof of 0 < sin x ≤ x on (0, π ]. ............................................................................................ 199
8.4 The graph of y = | sin x|......................................................................................................................................199
2
8.5 The winding number of γ around an arbitrary point p ..............................................................................202
8.6 The geometry of the points z, f (z) and g(z) ................................................................................................. 209

9.1 An example of the range K of f ....................................................................................................................... 219
9.2 The set of q ∈ K such that (∇f 3)(f —1(q)) = 0 ............................................................................................ 220
9.3 Geometric meaning of the implicit function theorem......................................................................................232
9.4 The graphs around the four points ......................................................................................................................233
9.5 The graphs around (0, 0) and (1, 0) ................................................................................................................ 236
9.6 The graph of the ellipse X2 + 4Y 2 = 1..................................................................................................... 239
9.7 The definition of the function ϕ(x, t) ...................................................................................................................243
9.8 The four regions divided by the two lines αx1 + βx2 = 0 and αx1 — βx2 = 0 ......................... 252

10.1 The compact convex set H and its boundary ∂H ......................................................................................... 256
10.2 The figures of the sets Ui, Wi and Vi ....................................................................................................................................................................... 264
10.3 The mapping T : I2 → H ..................................................................................................................................... 269
10.4 The mapping T : A → D....................................................................................................................................... 270
10.5 The mapping T : A◦ → D0........................................................................................................................................................................................................ 271
10.6 The mapping T : S → Q ...................................................................................................................................... 277

vii

,List of Figures viii

10.7 The open sets Q0.1, Q0.2 and Q ........................................................................................................................ 278
10.8 The mapping T : I3 → Q3.................................................................................................................................. 280
10.9 The mapping τ1 : Q2 → I2..................................................................................................................................................................................................... 288
10.10 The mapping τ2 : Q2 → I2..................................................................................................................................................................................................... 289
10.11 The mapping τ2 : Q2 → I2..................................................................................................................................................................................................... 289
10.12 The mapping Φ : D → R2 \ {0} ........................................................................................................................ 296
10.13 The spherical coordinates for the point Σ(u, v) .............................................................................................. 300
10.14 The rectangles D and E ........................................................................................................................................ 302
10.15 An example of the 2-surface S and its boundary ∂S ................................................................................ 304
10.16 The unit disk U as the projection of the unit ball V.....................................................................................325
10.17 The open cells U and V ..........................................................................................................................................326
10.18 The parameter domain D....................................................................................................................................... 332
10.19 The figure of the Möbius band..............................................................................................................................333
10.20 The “geometric” boundary of M..........................................................................................................................335

11.1 The open square Rδ((p, q)) and the neighborhood N√2δ ((p, q)) .............................................................. 350

B.1 The plane angle θ measured in radians.............................................................................................................365
B.2 The solid angle Ω measured in steradians ........................................................................................................366
B.3 A section of the cone with apex angle 2θ........................................................................................................366

, List of Tables


6.1 The number of intervals & end-points and the length of each interval ḟor each En......................................... 121

9.1 Expressions oḟ x around ḟour points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
9.2 Expressions oḟ y around ḟour points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235




ix

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Testbankwizard Havard university
View profile
Follow You need to be logged in order to follow users or courses
Sold
51
Member since
1 year
Number of followers
1
Documents
1192
Last sold
3 weeks ago
Top Grade study notes and exam guides

welcome to my stuvia store ! i offer high quality,well organized and exam ready notes tailored for high school,college,and university er you are studying business,law,nursing,computer science,education or humanities,you will find concise summaries,past paper solutions,revision guides and top scoring essays right here. NEW CONTENT IS ADDED WEEKLY.FOLLOW MY STORE AND STAY AHEAD IN YOUR STUDIES!!!!!

3.4

11 reviews

5
5
4
1
3
1
2
1
1
3

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions