100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Complete Solutions Manual – Time Series Analysis With Applications in R (2nd Ed) by Cryer & Chan, NEWEST VERSION

Rating
-
Sold
-
Pages
1031
Grade
A+
Uploaded on
21-10-2025
Written in
2025/2026

Complete Solutions Manual – Time Series Analysis With Applications in R (2nd Ed) by Cryer & Chan, NEWEST VERSION

Institution
Solution Manual
Course
Solution Manual











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Solution Manual
Course
Solution Manual

Document information

Uploaded on
October 21, 2025
Number of pages
1031
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

Solutions Manual –

Time Series Analysis With Applications In R
By Cryer & Chan


2nd Edition

,x Contents


CHAPTER 1 INTRODUCTION ...................................... 1
1.1 Examples Of Time Series ........................................... 1
1.2 A Model-Building Strategy .......................................... 8
1.3 Time Series Plots In History ........................................ 8
1.4 An Overview Of The Book ........................................... 9
Exercises ................................................................... 10

CHAPTER 2 FUNDAMENTAL CONCEPTS ...................... 11
2.1 Time Series And Stochastic Processes .......................... 11
2.2 Means, Variances, And Covariances ............................ 11
2.3 Stationarity ......................................................... 16
2.4 Summary ............................................................ 19
Exercises ................................................................... 19
Appendix A: Expectation, Variance, Covariance, And Correlation . 24

CHAPTER 3 TRENDS .......................................... 27
3.1 Deterministic Versus Stochastic Trends ........................ 27
3.2 Estimation Of A Constant Mean .................................. 28
3.3 Regression Methods............................................... 30
3.4 Reliability And Efficiency Of Regression Estimates ............ 36
3.5 Interpreting Regression Output .................................. 40
3.6 Residual Analysis .................................................. 42
3.7 Summary ............................................................ 50
Exercises ................................................................... 50

CHAPTER 4 MODELS FOR STATIONARY TIME SERIES ...... 55
4.1 General Linear Processes ......................................... 55
4.2 Moving Average Processes ....................................... 57
4.3 Autoregressive Processes ......................................... 66
4.4 The Mixed Autoregressive Moving Average Model ............ 77
4.5 Invertibility ......................................................... 79
4.6 Summary ............................................................ 80
Exercises ................................................................... 81
Appendix B: The Stationarity Region For An Ar(2) Process.......... 84
Appendix C: The Autocorrelation Function For Arma(P,Q). ......... 85

Ix


CHAPTER 5 MODELS FOR NONSTATIONARY TIME SERIES . 87
5.1 Stationarity Through Differencing................................ 88

, 5.2 Arima Models ..................................................... 92
5.3 Constant Terms In Arima Models ............................... 97
5.4 Other Transformations ............................................ 98
5.5 Summary ..........................................................102
Exercises .................................................................103
Appendix D: The Backshift Operator ..................................106

CHAPTER 6 MODEL SPECIFICATION .......................... 109
6.1 Properties Of The Sample Autocorrelation Function ......... 109
6.2 The Partial And Extended Autocorrelation Functions.........112
6.3 Specification Of Some Simulated Time Series ................117
6.4 Nonstationarity ...................................................125
6.5 Other Specification Methods ....................................130
6.6 Specification Of Some Actual Time Series .....................133
6.7 Summary ..........................................................141
Exercises ................................................................. 141

CHAPTER 7 PARAMETER ESTIMATION ....................... 149
7.1 The Method Of Moments.........................................149
7.2 Least Squares Estimation ....................................... 154
7.3 Maximum Likelihood And Unconditional Least Squares ......158
7.4 Properties Of The Estimates ..................................... 160
7.5 Illustrations Of Parameter Estimation........................... 163
7.6 Bootstrapping Arima Models ...................................167
7.7 Summary ..........................................................170
Exercises .................................................................170

CHAPTER 8 MODEL DIAGNOSTICS............................ 175
8.1 Residual Analysis ................................................. 175
8.2 Overfitting And Parameter Redundancy ........................185
8.3 Summary ..........................................................188
Exercises ................................................................. 188

9.1 Minimum Mean Square Error Forecasting ..................... 191
9.2 Deterministic Trends ............................................. 191
9.3 Arima Forecasting ............................................... 193
9.4 Prediction Limits .................................................. 203
9.5 Forecasting Illustrations ......................................... 204
9.6 Updating Arima Forecasts ...................................... 207
9.7 Forecast Weights And Exponentially Weighted
Moving Averages .................................................. 207
9.8 Forecasting Transformed Series ................................ 209

, xii Contents

9.9 Summary Of Forecasting With Certain Arima Models ....... 211
9.10 Summary ........................................................... 213
Exercises .................................................................. 213
Appendix E: Conditional Expectation ................................. 218
Appendix F: Minimum Mean Square Error Prediction .............. 218
Appendix G: The Truncated Linear Process .......................... 221
Appendix H: State Space Models ...................................... 222

CHAPTER 10 SEASONAL MODELS........................... 227
10.1 Seasonal Arima Models ......................................... 228
10.2 Multiplicative Seasonal Arma Models.......................... 230
10.3 Nonstationary Seasonal Arima Models ....................... 233
10.4 Model Specification, Fitting, And Checking .................... 234
10.5 Forecasting Seasonal Models ................................... 241
10.6 Summary ........................................................... 246
Exercises .................................................................. 246

CHAPTER 11 TIME SERIES REGRESSION MODELS......... 249
11.1 Intervention Analysis ............................................. 249
11.2 Outliers ............................................................ 257
11.3 Spurious Correlation ............................................. 260
11.4 Prewhitening And Stochastic Regression ...................... 265
11.5 Summary ........................................................... 273
Exercises .................................................................. 274


CHAPTER 12 TIME SERIES MODELS OF
HETEROSCEDASTICITY ........................... 277
12.1 Some Common Features Of Financial Time Series ..........278
12.2 The Arch(1) Model...............................................285
12.3 Garch Models .................................................... 289
12.4 Maximum Likelihood Estimation ................................298
12.5 Model Diagnostics ................................................301
12.6 Conditions For The Nonnegativity Of The
Conditional Variances ............................................307
12.7 Some Extensions Of The Garch Model .......................310
12.8 Another Example: The Daily Usd/Hkd Exchange Rates ....311
12.9 Summary ..........................................................315
Exercises ................................................................. 316
Appendix I: Formulas For The Generalized Portmanteau Tests ....318

CHAPTER 13 INTRODUCTION TO SPECTRAL ANALYSIS ..... 319

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Examarena West Virginia University
View profile
Follow You need to be logged in order to follow users or courses
Sold
272
Member since
1 year
Number of followers
32
Documents
462
Last sold
19 hours ago
Examarena

Are you looking for top-quality study resources to help you excel in your courses? Look no further! I’ve uploaded my carefully crafted notes, assignments, and exam guides to help you master your studies. Don’t miss out on better grades. email me and start using my materials today and feel the difference!

3.5

41 reviews

5
14
4
7
3
11
2
5
1
4

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions