SOLUTION MANUAL FOR SHIGLEYS
MECHANICAL ENGINEERING DESIGN 11TH
EDITION LATEST EDITION 2026
Chapter 1 Solutions - Rev. B, Page 1/6
,Problems 1-1 through 1-6 are for student research. No standard solutions are provided.
1-7 From Fig. 1-2, cost of grinding to 0.0005 in is 270%. Cost of turning to 0.003 in is
60%.
Relative cost of grinding vs. turning = 270/60 = 4.5 times ANSWER:
1-8 C A = CB,
10 + 0.8 P = 60 + 0.8 P 0.005 P 2
P 2 = 50/0.005 P = 100 parts ANSWER:
1-9 Max. load = 1.10 P
Min. area = (0.95)2 A
Min. strength = 0.85 S
To offset the absolute uncertainties, the design factor, from Eq. (1-1) should be
1.10
n d 1.43 ANSWER:
0.850.95
2
1-10 (a) X1 + X2 :
x1 x2 X1 e1 X 2 e2
error e x1 x2 X1 X 2
e1 e2 ANSWER:
(b) X1 X2 :
x 1 x 2 X1 e1 X 2 e2
e x1 x2 X1 X 2 e1 e2 ANSWER:
(c) X1 X2 :
x1x2 X1 e1 X 2 e2
e x1 x2 X1 X 2 X1 e2 X 2 e1 e1 e2
X e X e X X e1 e2 ANSWER:
1 2 2 1 1 2
X X
1 2
Chapter 1 Solutions - Rev. B, Page 2/6
, (d) X1 /X2 :
x1 X1 e1 X1 1 e1 X1
x X e X 1 e X
2 2 2 2 2 2
1
e e2 1 e X e e e e
1 then
1 1
2 1 1 1 2 1 2
1 1
X 2 X 2 1 e 2 X 2 X1 X 2 X1 X2
x1 X1
Thus, e X1 e1 e2 ANSWER:
x X X X X
2 2 2 1 2
1-11 (a) x 1 = 7 = 2.645 751 311 1
X1 = 2.64 (3 correct digits)
x 2 = 8 = 2.828 427 124 7
X2 = 2.82 (3 correct digits)
x 1 + x 2 = 5.474 178 435 8
e1 = x 1 X1 = 0.005 751 311 1
e2 = x 2 X2 = 0.008 427 124 7
e = e1 + e2 = 0.014 178 435 8
Sum = x 1 + x 2 = X1 + X2 + e
= 2.64 + 2.82 + 0.014 178 435 8 = 5.474 178 435 8 Checks
(b) X1 = 2.65, X2 = 2.83 (3 digit significant numbers)
e1 = x 1 X1 = 0.004 248 688 9
e2 = x 2 X2 = 0.001 572 875 3
e = e1 + e2 = 0.005 821 564 2
Sum = x 1 + x 2 = X1 + X2 + e
= 2.65 +2.83 0.001 572 875 3 = 5.474 178 435 8 Checks
S 16 1000 25 10
3
1-12 d 0.799 in ANSWER:
n d 3 2.5
7
Table A-17: d= in ANSWER:
8
25 10 3
Factor of safety: nS 3.29 ANSWER:
16
1000
7
3
1-13 Eq. (1-5): R = Ri = 0.98(0.96)0.94 = 0.88
i1
Overall reliability = 88 percent ANSWER:
Chapter 1 Solutions - Rev. B, Page 3/6
, 1-14 a = 1.500 0.001 in
b = 2.000 0.003 in
c = 3.000 0.004 in
d = 6.520 0.010 in
(a) w d a b c = 6.520 1.5 2 3 = 0.020 in
tw tall = 0.001 + 0.003 + 0.004 +0.010 = 0.018
w = 0.020 0.018 in ANSWER:
(b) From part (a), wmin = 0.002 in. Thus, must add 0.008 in to d . Therefore,
d = 6.520 + 0.008 = 6.528 in ANSWER:
1-15 V = xyz, and x = a a, y = b b, z = c c,
V abc
V a ab bc c
abc bca acb abc abc bca cab abc
The higher order terms in are negligible. Thus,
V bca acb abc
V bca acb abc a b c a b c
and, ANSWER:
V abc a b c a b c
For the numerical values given, V 1.500 1.8753.000 8.4375 in3
V 0.002 0.003 0.004
0.00427 V 0.00427 8.4375 0.036 in3
V 1.500 1.875 3.000
V = 8.438 0.036 in3 ANSWER:
Chapter 1 Solutions - Rev. B, Page 4/6
MECHANICAL ENGINEERING DESIGN 11TH
EDITION LATEST EDITION 2026
Chapter 1 Solutions - Rev. B, Page 1/6
,Problems 1-1 through 1-6 are for student research. No standard solutions are provided.
1-7 From Fig. 1-2, cost of grinding to 0.0005 in is 270%. Cost of turning to 0.003 in is
60%.
Relative cost of grinding vs. turning = 270/60 = 4.5 times ANSWER:
1-8 C A = CB,
10 + 0.8 P = 60 + 0.8 P 0.005 P 2
P 2 = 50/0.005 P = 100 parts ANSWER:
1-9 Max. load = 1.10 P
Min. area = (0.95)2 A
Min. strength = 0.85 S
To offset the absolute uncertainties, the design factor, from Eq. (1-1) should be
1.10
n d 1.43 ANSWER:
0.850.95
2
1-10 (a) X1 + X2 :
x1 x2 X1 e1 X 2 e2
error e x1 x2 X1 X 2
e1 e2 ANSWER:
(b) X1 X2 :
x 1 x 2 X1 e1 X 2 e2
e x1 x2 X1 X 2 e1 e2 ANSWER:
(c) X1 X2 :
x1x2 X1 e1 X 2 e2
e x1 x2 X1 X 2 X1 e2 X 2 e1 e1 e2
X e X e X X e1 e2 ANSWER:
1 2 2 1 1 2
X X
1 2
Chapter 1 Solutions - Rev. B, Page 2/6
, (d) X1 /X2 :
x1 X1 e1 X1 1 e1 X1
x X e X 1 e X
2 2 2 2 2 2
1
e e2 1 e X e e e e
1 then
1 1
2 1 1 1 2 1 2
1 1
X 2 X 2 1 e 2 X 2 X1 X 2 X1 X2
x1 X1
Thus, e X1 e1 e2 ANSWER:
x X X X X
2 2 2 1 2
1-11 (a) x 1 = 7 = 2.645 751 311 1
X1 = 2.64 (3 correct digits)
x 2 = 8 = 2.828 427 124 7
X2 = 2.82 (3 correct digits)
x 1 + x 2 = 5.474 178 435 8
e1 = x 1 X1 = 0.005 751 311 1
e2 = x 2 X2 = 0.008 427 124 7
e = e1 + e2 = 0.014 178 435 8
Sum = x 1 + x 2 = X1 + X2 + e
= 2.64 + 2.82 + 0.014 178 435 8 = 5.474 178 435 8 Checks
(b) X1 = 2.65, X2 = 2.83 (3 digit significant numbers)
e1 = x 1 X1 = 0.004 248 688 9
e2 = x 2 X2 = 0.001 572 875 3
e = e1 + e2 = 0.005 821 564 2
Sum = x 1 + x 2 = X1 + X2 + e
= 2.65 +2.83 0.001 572 875 3 = 5.474 178 435 8 Checks
S 16 1000 25 10
3
1-12 d 0.799 in ANSWER:
n d 3 2.5
7
Table A-17: d= in ANSWER:
8
25 10 3
Factor of safety: nS 3.29 ANSWER:
16
1000
7
3
1-13 Eq. (1-5): R = Ri = 0.98(0.96)0.94 = 0.88
i1
Overall reliability = 88 percent ANSWER:
Chapter 1 Solutions - Rev. B, Page 3/6
, 1-14 a = 1.500 0.001 in
b = 2.000 0.003 in
c = 3.000 0.004 in
d = 6.520 0.010 in
(a) w d a b c = 6.520 1.5 2 3 = 0.020 in
tw tall = 0.001 + 0.003 + 0.004 +0.010 = 0.018
w = 0.020 0.018 in ANSWER:
(b) From part (a), wmin = 0.002 in. Thus, must add 0.008 in to d . Therefore,
d = 6.520 + 0.008 = 6.528 in ANSWER:
1-15 V = xyz, and x = a a, y = b b, z = c c,
V abc
V a ab bc c
abc bca acb abc abc bca cab abc
The higher order terms in are negligible. Thus,
V bca acb abc
V bca acb abc a b c a b c
and, ANSWER:
V abc a b c a b c
For the numerical values given, V 1.500 1.8753.000 8.4375 in3
V 0.002 0.003 0.004
0.00427 V 0.00427 8.4375 0.036 in3
V 1.500 1.875 3.000
V = 8.438 0.036 in3 ANSWER:
Chapter 1 Solutions - Rev. B, Page 4/6