100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Exam (elaborations)

Solution Manual for Stochastic Processes With R An Introduction 1st edition by Olga Korosteleva

Rating
-
Sold
-
Pages
40
Grade
A+
Uploaded on
13-10-2025
Written in
2025/2026

Title: Solutions Manual for Stochastic Processes With R: An Introduction – 1st Edition Author: Olga Korosteleva (unofficially compiled by various contributors) Content: Step-by-step solutions to all 9 chapters of the textbook, including exercises on: Discrete-time Markov chains Continuous-time processes Poisson processes Brownian motion Format: PDF, instructor-level elaborations

Show more Read less
Institution
Solution Manual For Stochastic Processes With R An
Course
Solution Manual for Stochastic Processes With R An











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Solution Manual for Stochastic Processes With R An
Course
Solution Manual for Stochastic Processes With R An

Document information

Uploaded on
October 13, 2025
Number of pages
40
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Content preview

https://www.stuvia.com/en-us/doc/8364376/solutions-manual-for-stochastic-processes-with-r-an-introduction-1st-
edition-by-korosteleva-2024-all-9-chapters-covered

ALL 9 CHAPTER COVERED




SOLUTIONS MANUAL

, TABLE OF CONTENTS
CHAPTER 1 ……………………………………………………………………………………. 3
CHAPTER 2 ……………………………………………………………………………………. 31
CHAPTER 3 ……………………………………………………………………………………. 41
CHAPTER 4 ……………………………………………………………………………………. 48
CHAPTER 5 ……………………………………………………………………………………. 60
CHAPTER 6 ……………………………………………………………………………………. 67
CHAPTER 7 ……………………………………………………………………………………. 74
CHAPTER 8 ……………………………………………………………………………………. 81
CHAPTER 9 ……………………………………………………………………………………. 87




2

, CHAPTER 1
0.3 0.4 0.3
EXERCISE 1.1. For a Markov chain with a one-step transition probability matrix � 0.2 0.3 0.5 �
0.8 0.1 0.1
we compute:

(a) 𝑃𝑃(𝑋𝑋3 = 2 |𝑋𝑋0 = 1, 𝑋𝑋1 = 2, 𝑋𝑋2 = 3) = 𝑃𝑃(𝑋𝑋3 = 2 | 𝑋𝑋2 = 3) (by the Markov property)
= 𝑃𝑃32 = 0.1.
(b) 𝑃𝑃(𝑋𝑋4 = 3 |𝑋𝑋0 = 2, 𝑋𝑋3 = 1) = 𝑃𝑃(𝑋𝑋4 = 3 | 𝑋𝑋3 = 1) (by the Markov property)
= 𝑃𝑃13 = 0.3.
(c) 𝑃𝑃(𝑋𝑋0 = 1, 𝑋𝑋1 = 2, 𝑋𝑋2 = 3, 𝑋𝑋3 = 1) = 𝑃𝑃(𝑋𝑋3 = 1 | 𝑋𝑋0 = 1, 𝑋𝑋1 = 2, 𝑋𝑋2 = 3) 𝑃𝑃(𝑋𝑋2 = 3 |𝑋𝑋0 = 1,
𝑋𝑋1 = 2) 𝑃𝑃(𝑋𝑋1 = 2 | 𝑋𝑋0 = 1) 𝑃𝑃(𝑋𝑋0 = 1) (by conditioning)
= 𝑃𝑃(𝑋𝑋3 = 1 | 𝑋𝑋2 = 3) 𝑃𝑃(𝑋𝑋2 = 3 | 𝑋𝑋1 = 2) 𝑃𝑃(𝑋𝑋1 = 2 | 𝑋𝑋0 = 1) 𝑃𝑃(𝑋𝑋0 = 1) (by the Markov property)

= 𝑃𝑃31 𝑃𝑃23 𝑃𝑃12 𝑃𝑃(𝑋𝑋0 = 1) = (0.8)(0.5)(0.4)(1) = 0.16.
(d) We first compute the two-step transition probability matrix. We obtain

0.3 0.4 0.3 0.3 0.4 0.3 0.41 0.27 0.32
𝐏𝐏(2) = � 0.2 0.3 0.5 � � 0.2 0.3 0.5 � = � 0.52 0.22 0.26�.
Now we write 0.8 0.1 0.1 0.8 0.1 0.1 0.34 0.36 0.30
𝑃𝑃(𝑋𝑋0 = 1, 𝑋𝑋1 = 2, 𝑋𝑋3 = 3, 𝑋𝑋5 = 1) = 𝑃𝑃(𝑋𝑋5 = 1 | 𝑋𝑋0 = 1, 𝑋𝑋1 = 2, 𝑋𝑋3 = 3) 𝑃𝑃(𝑋𝑋3 = 3 |𝑋𝑋0 = 1,
𝑋𝑋1 = 2) 𝑃𝑃(𝑋𝑋1 = 2 | 𝑋𝑋0 = 1) 𝑃𝑃(𝑋𝑋0 = 1) (by conditioning)
= 𝑃𝑃(𝑋𝑋5 = 1 | 𝑋𝑋3 = 3) 𝑃𝑃(𝑋𝑋3 = 3 | 𝑋𝑋1 = 2) 𝑃𝑃(𝑋𝑋1 = 2 | 𝑋𝑋0 = 1) 𝑃𝑃(𝑋𝑋0 = 1) (by the Markov property)
(2) (2) 𝑃𝑃(𝑋𝑋 = 1) = (0.34)(0.26)(0.4)(1) = 0.03536.
𝑃𝑃

= 𝑃𝑃31 𝑃𝑃23 12 0

EXERCISE 1.2. (a) We plot a diagram of the Markov chain.

#specifying transition probability matrix
tm<- matrix(c(1, 0, 0, 0, 0, 0.5, 0, 0, 0, 0.5, 0.2, 0, 0, 0, 0.8,
0, 0, 1, 0, 0, 0, 0, 0, 1, 0), nrow=5, ncol=5, byrow=TRUE)

#transposing transition probability matrix
tm.tr<- t(tm)

#plotting diagram
library(diagram)
plotmat(tm.tr, arr.length=0.25, arr.width=0.1, box.col="light blue",
box.lwd=1, box.prop=0.5, box.size=0.12, box.type="circle", cex.txt=0.8,
lwd=1, self.cex=0.3, self.shiftx=0.01, self.shifty=0.09)




3

, State 2 is reflective. The chain leaves that state in one step. Therefore, it forms a separate transient
class that has an infinite period.

Finally, states 3, 4, and 5 communicate and thus belong to the same class. The chain can return to
either state in this class in 3, 6, 9, etc. steps, thus the period is equal to 3. Since there is a positive
probability to leave this class, it is transient.

The R output supports these findings.

#creating Markov chain object
library(markovchain)
mc<- new("markovchain", transitionMatrix=tm,states=c("1", "2", "3", "4", "5"))

#computing Markov chain characteristics
recurrentClasses(mc)

"1"

transientClasses(mc)

"2"
"3" "4" "5"

absorbingStates(mc)

"1"

(c) Below we simulate three trajectories of the chain that start at a randomly chosen state.
4
$11.99
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
edulearningcentre

Get to know the seller

Seller avatar
edulearningcentre NURSING, ECONOMICS, MATHEMATICS, BIOLOGY, AND HISTORY MATERIALS BEST TUTORING, HOMEWORK HELP, EXAMS, TESTS, AND STUDY GUIDE MATERIALS WITH GUARANTEED A+ I am a dedicated medical practitioner with diverse knowledge in matters
View profile
Follow You need to be logged in order to follow users or courses
Sold
2
Member since
5 months
Number of followers
1
Documents
214
Last sold
2 weeks ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions