First Course in Abstract
| | |
Algebra A 8th Edition by John
| | | | | |
B. Fraleigh
| | | |
| All Chapters Full Complete
| | |
, CONTENTS
1. Sets | and | Relations 1
I. Groups and Subgroups
| |
2. Introduction | and | Examples 4
3. Binary | Operations 7
4. Isomorphic | Binary | Structures 9
5. Groups 13
6. Subgroups 17
7. Cyclic | | Groups 21
8. Generators | and | Cayley | Digraphs 24
II. Permutations, Cosets, and Direct Products
| | | |
9. Groups | of |Permutations 26
10. Orbits, |Cycles, |and |the |Alternating |Groups
30
11. Cosets | and |the | Theorem | of | Lagrange 34
12. Direct | Products | and | Finitely | Generated | Abelian | Groups 37
13. Plane | Isometries 42
III. Homomorphisms and Factor Groups | | |
14. Homomorphisms 44
15. Factor | Groups 49
16. Factor-Group | Computations | and | Simple | Groups 53
17. Group |Action |on |a |Set 58
18. Applications |of |G-Sets |to |Counting 61
IV. Rings and Fields| |
19. Rings |and |Fields 63
20. Integral | Domains 68
21. Fermat’s | and | Euler’s | Theorems72
22. The | Field | of | Quotients | of | an | Integral | Domain 74
23. Rings | of | Polynomials 76
24. Factorization |of |Polynomials |over |a |Field 79
25. Noncommutative |Examples 85
26. Ordered | Rings | and | Fields 87
V. Ideals and Factor Rings
| | |
27. Homomorphisms |and |Factor |Rings 89
28. Prime |and |Maximal |Ideals 94
,29. Grö bner |Bases |for |Ideals 99
, VI. Extension Fields |
30. Introduction |to |Extension |Fields 103
31. Vector | Spaces 107
32. Algebraic | Extensions 111
33. Geometric |Constructions 115
34. Finite | Fields 116
VII. Advanced Group Theory
| |
35. Isomorphism |Theorems 117
36. Series |of |Groups 119
37. Sylow | Theorems 122
38. Applications | of | the | Sylow | Theory 124
39. Free | Abelian | Groups 128
40. Free |Groups 130
41. Group | Presentations 133
VIII. Groups in Topology| |
42. Simplicial | Complexes | and | Homology | Groups136
43. Computations | of | Homology |Groups 138
44. More |Homology |Computations |and |Applications 140
45. Homological |Algebra 144
IX. Factorization
46. Unique | Factorization | Domains 148
47. Euclidean | Domains 151
48. Gaussian | Integers | and | Multiplicative | Norms 154
X. Automorphisms and Galois Theory
| | |
49. Automorphisms |of |Fields 159
50. The | Isomorphism | Extension | Theorem 164
51. Splitting | Fields 165
52. Separable |Extensions 167
53. Totally |Inseparable |Extensions 171
54. Galois | Theory 173
55. Illustrations |of |Galois |Theory 176
56. Cyclotomic|Extensions 183
57. Insolvability | of | the | Quintic 185
APPENDIX | | Matrix | | Algebra 187
iv