First Course in Abstract
w w w
wAlgebra A 8th Edition by John
w w w w w
B. Fraleigh
w w w w
w All Chapters Full Complete
w w w
, CONTENTS
1. Sets and Relations 1
w w
I. Groups and Subgroups w w
2. Introduction and Examples 4 w w
3. Binary Operations 7w
4. Isomorphic Binary Structures 9 w w
5. Groups 13
6. Subgroups 17
7. Cyclic Groups 21
w w
8. Generators and Cayley Digraphs 24 w w w
II. Permutations, Cosets, and Direct Products w w w w
9. Groups of Permutations 26w w
10. Orbits, Cycles, and the Alternating Groups w w w w w
30
11. Cosets and the Theorem of Lagrange 34
w w w w w
12. Direct Products and Finitely Generated Abelian Groups 37
w w w w w w
13. Plane Isometries 42
w
III. Homomorphisms and Factor Groups w w w
14. Homomorphisms 44
15. Factor Groups 49
w
16. Factor-Group Computations and Simple Groups 53 w w w w
17. Group Action on a Set 58
w w w w
18. Applications of G-Sets to Counting 61 w w w w
IV. Rings and Fields w w
19. Rings and Fields 63
w w
20. Integral Domains 68 w
21. Fermat’s and Euler’s Theorems 72 w w w
22. The Field of Quotients of an Integral Domain 74
w w w w w w w
23. Rings of Polynomials 76
w w
24. Factorization of Polynomials over a Field 79 w w w w w
25. Noncommutative Examples 85 w
26. Ordered Rings and Fields 87 w w w
V. Ideals and Factor Rings w w w
27. Homomorphisms and Factor Rings 89 w w w
28. Prime and Maximal Ideals 94
w w w
,29. Gröbner Bases for Ideals 99
w w w
, VI. Extension Fields w
30. Introduction to Extension Fields 103 w w w
31. Vector Spaces 107 w
32. Algebraic Extensions 111 w
33. Geometric Constructions 115 w
34. Finite Fields 116
w
VII. Advanced Group Theory w w
35. Isomorphism Theorems 117 w
36. Series of Groups 119
w w
37. Sylow Theorems 122
w
38. Applications of the Sylow Theory 124 w w w w
39. Free Abelian Groups 128
w w
40. Free Groups 130
w
41. Group Presentations 133
w
VIII. Groups in Topology w w
42. Simplicial Complexes and Homology Groups 136
w w w w
43. Computations of Homology Groups 138 w w w
44. More Homology Computations and Applications 140
w w w w
45. Homological Algebra 144 w
IX. Factorization
46. Unique Factorization Domains 148
w w
47. Euclidean Domains 151 w
48. Gaussian Integers and Multiplicative Norms 154
w w w w
X. Automorphisms and Galois Theory w w w
49. Automorphisms of Fields 159 w w
50. The Isomorphism Extension Theorem 164
w w w
51. Splitting Fields 165 w
52. Separable Extensions 167 w
53. Totally Inseparable Extensions 171
w w
54. Galois Theory 173 w
55. Illustrations of Galois Theory 176 w w w
56. CyclotomicExtensions 183 w
57. Insolvability of the Quintic 185 w w w
APPENDIX Matrix Algebra w w w w 187
iv