SOLUTIONS
, CONTENTS
Preface …………………………………………...……………………………………….. 1
Chapter 2 Mathematical Concepts in Kinematics ……………………………………….. 2
Chapter 3 Fundamental Concepts in Kinematics ……………………………………….. 8
Chapter 4 Kinematic Analysis of Planar Mechanisms ............................................................... 19
Chapter 5 Dimensional Synthesis ............................................................................................. 81
Chapter 6 Static Force Analysis of Planar Mechanisms........................................................... 159
Chapter 7 Dynamic Force Analysis of Planar Mechanisms ..................................................... 210
Chapter 8 Design & Kinematic Analysis of Gears .................................................................. 288
Chapter 9 Design & Kinematic Analysis of Disk Cams .......................................................... 327
Chapter 10 Kinematic Analysis of Spatial Mechanisms ........................................................... 364
Chapter 11 Introduction to Robotic Manipulators .................................................................... 409
@
@SSeeisismmicicisisoolalatitoionn
, CHAPTER 2
Problem 2.1 Statement:
Formulate an equation for the vector loop illustrated in Figure P.2.1. Consider that vector V j
always lies along the real axis.
Figure P.2.1 Vector loop (3 vectors where V j changes length) in 2-D complex space
Problem 2.1 Solution:
Taking the clockwise sum of the vector loop in Figure P.2.1 produces the equation
V1ei1 +V2 ei2 − Vj = 0 .
When expanded and separated into real and imaginary terms, the vector loop equation becomes
V1 cos1 +V2 cos2 − Vj = 0
.
V1 sin 1 +V2 sin 2 = 0
Problem 2.2 Statement:
Formulate an equation for the vector loop illustrated in Figure P.2.2. Consider that vector V j
always lies along the real axis and vector V3 is always perpendicular to the real axis.
@Seismi2cisolation
@Seismicisolation
, Figure P.2.2 Vector loop (4 vectors where V j changes length) in 2-D complex space
Problem 2.2 Solution:
Taking the clockwise sum of the vector loop in Figure P.2.2 produces the equation
V1 ei1 +V2 ei2 − V3 − Vj = 0 .
When expanded and separated into real and imaginary terms, the vector loop equation becomes
V1 cos1 +V2 cos2 − Vj = 0
.
V1 sin 1 +V2 sin 2 − V3 = 0
Problem 2.3 Statement:
Calculate the first derivative of the vector loop equation solution from Problem 2.2. Consider
only angles 1 , 2 and vector V j from Problem 2 to be time-dependent.
Problem 2.3 Solution:
Differentiating the vector loop equation solution from Problem 2.2 produces the equation
i1V1ei1 + i2V2ei2 − V j = 0.
When expanded and separated into real and imaginary terms, the vector loop equation becomes
−1V1 sin 1 − 2V2 sin 2 − V j = 0
.
1V1 cos 1 + 2V2 cos 2 = 0
@Seismi3cisolation
@Seismicisolation